Tactical Use of Propagation Predictions for HF Contesting A Joint PVRC/NCCC Webinar Presentation Monday, June 7, 2010

By Dean Straw, N6BV Senior Assistant Technical Editor (Retired)

1

Tactical: "adroit in planning or maneuvering to accomplish a purpose"

• What is the purpose of planning tactically?

Tactical: "adroit in planning or maneuvering to accomplish a purpose"

- What is the purpose of planning tactically?
- Why, of course, to boost our contest scores... hopefully, even to win some contests!

Some Propagation-Prediction Tools

- VOACAP
- VOAAREA
- OH6BG's VOACAP site
- N6BV prediction tables

• *VOACAP* is considered the "gold standard" of HF propagation-prediction programs, but it is difficult to use.

- *VOACAP* is considered the "gold standard" of HF propagation-prediction programs, but it is difficult to use.
- *VOACAP* is for point-to-point predictions (one transmitter site to one receiver site).

- *VOACAP* is considered the "gold standard" of HF propagation-prediction programs, but it is difficult to use.
- *VOACAP* is for point-to-point predictions (one transmitter site to one receiver site).
- *VOACAP* produces lengthy tabular printouts that require a lot of interpretation and massaging.

A Typical VOACAP Output Table

Oct	1994	SSN = 10	0.	M	inimum Ang	gle= 0.100	degrees
SAN F	RANCISCO	LONDON		AZIMUT	HS	N. MI.	KM
37.78	N 122.42	2 W - 51.50 N	0.17 W	32.64	316.78	4651.1	8613.2
XMIR	2-30 + 10).0 dBi[samples	\SAMPLE.00] Az=	52.9 OFFa	az=339.7	1.500kW
RCVR	2-30 + 10).0 dBi[samples	\SAMPLE.00] Az=	234.9 OFFa	az= 81.9	
3 MHz	NOISE = -	-163.6 dBW	REQ. REL =	50% R	EQ. SNR =	43.0 dB	

SUMMARY 6 MODES FREQ = 14.1 MHZ UT = 15.0

for each hour -- the output file is huge (about 250 kB = 28 printed pages)

- *VOACAP* is considered the "gold standard" of HF propagation-prediction programs, but it is difficult to use.
- *VOACAP* is for point-to-point predictions (one transmitter site to one receiver site).
- *VOACAP* produces lengthy tabular printouts that require a lot of interpretation and massaging.
- *VOACAP* can produce colorful graphs, although these aren't really useful for contest planning.

VOACAP Graphs?

SDBW = -93.00 at UT=14.07(14:04) Freq= 21.177 MHz

This graph looks pretty, but it doesn't really give that much "Big Picture" information for contest planning.

VOAAREA

• *VOAAREA* uses the *VOACAP* engine to produce area-wide coverage from a single transmitting site for a single frequency.

SAN FRANCISCO [Dipole @ 7] 1.5kW 80deg 02ut 3.800MHz Nov 10ssn

SDBW

Tx location to grid of Rx

AREADATA\DEFAULT\SF4.V19

VOAAREA

- *VOAAREA* uses the *VOACAP* engine to produce area-wide coverage from a single transmitting site for a single frequency.
- *VOAAREA* charts are arguably the most intuitive presentation of propagation data but only for a single frequency and a single UTC time.

VOAAREA

- *VOAAREA* uses the *VOACAP* engine to produce area-wide coverage from a single transmitting site for a single frequency.
- *VOAAREA* charts are arguably the most intuitive presentation of propagation data but only for a single frequency and a single UTC time.

• This makes it difficult to get the *big picture*, unless charts for several frequencies are combined in a montage good for one hour at a time. A series of these montages makes a sort of *movie* to use while operating.

contest)

15

VOAAREA

• However, *VOAAREA* movies don't show what the competition is doing... How strong is the East Coast into Europe compared to a W6, for example?

VOAAREA

- However, *VOAAREA* movies don't show what the competition is doing... How strong is the East Coast into Europe compared to a W6, for example?
- *VOAAREA* movies don't tell me whether I can run rate at a particular time on a particular band, despite competition from around the world.

How strong is a W3 into W1, compared to a W6 on 80 meters?

Latest N6BV Prediction Tables

• Early prediction tables were in *The ARRL Antenna Book*.

Latest N6BV Prediction Tables

- Early prediction tables were in *The ARRL Antenna Book*.
- The newest versions cover 240+ transmitting QTHs around the world.

New N6BV Prediction Tables

240+ transmitting QTHs around the world.

Latest N6BV Prediction Tables

- Early prediction tables were in *The ARRL Antenna Book*.
- The newest versions cover 240+ transmitting QTHs around the world.
- There are two sets of tables (Summary & Detailed):
 - Summary (each page shows five contest bands for 24 hours to seven general areas around the world)

Example: Summary Prediction Table

Oct., CA (San Francisco), for SSN = Low, Sigs in S-Units. By N6BV, ARRL.

																						-														
			80	80 Meters						40 Meters						20 Meters						15 Meters							10 Meters							
UTC	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	UTC
0	1	-	2	1	-	-	9+	6	-	8	6	1	2	9+	4	8	9+	8	8	9+	9+	-	9	9+	9	8	9+	9+	-	5	9	1*	-	7	9	0
1	4	-	5	4	-	-	9+	7	-	9	8	2	6	9+	5	8	9+	9	8	9+	9+	-	8	9	4*	8	9+	9+	-	4	5*	-	5*	8	6	1
2	5	-	7	6	-	3	9+	7	1	9	7	2	8	9+	4	8	9+	9	8	9+	9+	-	8	9	3*	6*	9+	9	-	1	1*	-	2*	7	6	2
3	8	-	8	8	-	7	9+	8	1	9	8	2	9	9+	2	8	9	7	8	9+	9+	1*	7	4*	6*	6*	9	8	-	-	1*	-	2*	6	7	3
4	8	-	8	8	-	9	9+	8	3	9	7	1	9+	9+	2	8	9	6*	7	9+	9+	4*	4	2*	6*	3*	8	8	-	-	-	-	-	-	7	4
5	8	-	8	8	-	9	9+	9	5	9	8	1	9+	9+	1*	8	9	5*	4	9	9	1*	-	-	3*	1*	6	8	-	-	-	-	-	-	7	5
6	8	2	8	8	-	9+	9+	9	7	9	8	1	9+	9+	1*	5	9	4	1*	9	9	-	-	-	1*	-	2	8	-	-	-	-	-	-	7	6
7	6	5	8	6	-	9+	9+	9	8	9	8	4	9+	9+	1	1	9	5	-	9+	9+	-	-	-	-	-	-	8	-	-	-	-	-	-	7	7
8	4	7	8	2	1	9+	9+	6	9	9	6	5	9+	9+	-	1*	9	5	-	9	9+	-	-	4	-	-	-	8	-	-	-	-	-	-	7	8
9	1	8	8	-	2	9+	9+	5	9	9	5	6	9+	9+	-	1*	9	1	-	9	9+	-	-	3	-	-	-	8	-	-	-	-	-	-	7	9
10	-	9	9	-	3	9+	9+	5	9	9	2	7	9+	9+	-	2	9	1*	1*	9	9+	-	-	1	-	-	-	8	-	-	-	-	-	-	7	10
11	-	9	9	-	6	9+	9+	4	9	9	1	8	9+	9+	-	2	7	3*	1*	9+	9	-	-	-	-	-	-	8	-	-	-	-	-	-	7	11
12	-	9	6	-	8	9+	9+	3	9	9	-	9	9+	9+	-	3	5	2*	1*	9+	8	-	-	-	-	-	-	8	-	-	-	-	-	-	7	12
13	-	9	2	-	7	9+	9+	3	9	8	-	9	9+	9+	-	1*	9	4	1*	9	9+	-	-	2	-	-	-	8	-	-	-	-	-	-	7	13
14	-	8	-	-	7	9	9+	5	9	4	2	8	9	9+	6	-	9+	7*	4*	8	9+	-	4*	9	3	2*	2*	9	-	-	-	-	-	-	7	14
15	-	7	-	-	4	9	9+	2	9	1	-	8	9	9+	7	3	9	7*	6	8	9+	5*	2*	9+	8*	7*	2*	9+	-	5*	8	-	3*	4*	8	15
16	-	4	-	-	1	6	9+	1	8	-	-	5	9	9+	8	9	9	9	7	9+	9+	5	2*	9+	8	7*	6	9+	2*	5*	8	4*	6*	2*	9	16
17	-	1	-	-	-	2	9+	1	7	-	1	4	8	9+	8	9	7	7	7	9+	9+	7	7	9	8	5*	5	9+	5*	3*	8	6*	4*	-	9	17
18	-	-	-	-	-	-	9+	-	4	-	-	2	5	9+	7	8	5	7	7	9+	9+	7	8	9	9	4*	9	9+	3*	-	8	5*	2*	8	9	18
19	-	-	-	-	-	-	9+	-	1	-	-	1	1	9+	7	8	6	6	5	9	9+	4	2*	9	8	2*	9+	9+	-	-	9	6*	2*	7	9+	19
20	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	8	8	7	7	4	9	9+	1*	4	9	9	2*	9+	9+	-	-	9	6	-	6	9+	20
21	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	6	8	8	7	4	9	9+	1*	8	9+	9	2*	9	9+	-	-	9	4*	-	9	9+	21
22	-	-	-	-	-	-	9+	1	-	1	1	-	-	9+	4	8	9	8	7	9	9+	-	8	9+	9	2*	9	9+	-	-	9	4*	-	9	9+	22
23	-	-	-	-	-	-	9+	5	-	5	4	2	-	9+	4	8	9+	9	8	9	9+	-	9	9+	9	5	9+	9+	_	4	9	2*	-	4	9+	23
	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	

Five contest bands, 24 hours, 7 areas around the world.

Summary Prediction Tables

- Seven general areas are covered:
 - EU = Europe
 - FE = Far East
 - SA = South America
 - AF = Africa
 - AS =south Asia
 - OC = Oceania
 - NA = North America

Summary Prediction Tables

- Seven general areas are covered:
 - EU = Europe
 - FE = Far East
 - SA = South America
 - AF = Africa
 - AS =south Asia
 - OC = Oceania
 - NA = North America

• The strongest signals in each area are displayed, in S-units, including long-path signals (*).

Summary Prediction Tables

- Seven general areas are covered:
 - EU = Europe
 - FE = Far East
 - SA = South America
 - AF = Africa
 - AS =south Asia
 - OC = Oceania
 - NA = North America
- The strongest signals in each area are displayed, in S-units, including long-path signals (*).
- Summary tables are most useful for planning for single-operator, all-band operations, like a contest.

Solar Activity in Prediction Tables

- Six levels of 12-month SSN (Smoothed Sunspot Number) or SF (Solar Flux):
 - VL = Very Low (SSN: 0 to 20)
 - LO = Low (SSN: 21 to 40)
 - ME = Medium (SSN: 41 to 60)
 - HI = High (SSN: 61 to 100)
 - VH = Very High (SSN: 101 to 150)
 - UH = Ultra High (SSN \geq 151)

Solar Activity in Prediction Tables

- Six levels of 12-month SSN (Smoothed Sunspot Number) or SF (Solar Flux):
 - VL = Very Low (SSN: 0 to 20)
 - LO = Low (SSN: 21 to 40)
 - ME = Medium (SSN: 41 to 60)
 - HI = High (SSN: 61 to 100)
 - VH = Very High (SSN: 101 to 150)
 - UH = Ultra High (SSN \geq 151)
- Equivalent smoothed sunspot number: http://www.nwra-az.com/spawx/ssne.html

Latest N6BV Prediction Tables

- Early prediction tables were in *The ARRL Antenna Book*.
- The newest versions cover 240+ transmitting QTHs around the world.
- There are two sets of tables (Summary & Detailed):
 - Summary (each page shows five contest bands for 24 hours to seven general areas around the world)
 - Detailed (each page shows one band over 24 hours, for 40 CQ Zones all around the world).

Example: Detailed Prediction Table

20 Meters: Oct., CA (San Francisco), for SSN = Low, Sigs in S-Units. By N6BV, ARRL.

		01	C	>																					
	Zone	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	KL7 = 0	01 9	+ 9	+ 9+	9+	9+	8	4	1	1	1	1	-	-	-	-	7	9+	9+	9+	9+	9+	9+	9+	9+
	V02 = 0	02 9	7	1	-	-	-	-	-	-	1*	-	1*	1*	-	9	9	9	9	7	9	9	9	9	9+
	W6 = (03 5	6	7	8	8	8	8	8	8	8	8	8	8	8	7	7	6	6	6	5	5	5	6	5
USA	W9 = (04 9	+ 9	+ 9+	9	5	4	2	5	7	6	1	1*	1*	7	9+	9+	9+	9+	9+	9+	9+	9	9+	9+
	W3 = (05 9	+ 9	2	9	7	7	8	8	9	8	2	1	7	-	9	9+	9	9	9	9	9	9	9+	9+
	XE1 = 0	06 9	+ 9	+ 9+	9+	9	9	9	9+	9+	9+	9+	9	8	9+	9+	9+	9+	9	9	9	9	9	9+	9+
	TI = 0	07 9	+ 9	+ 9	4	1	1	1	5	7	6	1	-	-	9	9+	9	9	7	5	5	6	7	9	9+
	VP2 = 0	08 9	+ 9	4	1	-	-	1	4	3	_	-	-	1	9	9	8	8	4	4	6	7	8	9	9+
	P4 = 0	09 9	+ 9	6	2	1	1	2	6	6	1	-	-	1	9	9	9	8	4	4	4	6	7	9	9
	HC =	10 9	+ 9	+ 9+	8	5	5	7	6	6	2	-	-	2	9	9	8	6	3	2	2	4	6	8	9
	PY1 = 1	11 9	. 9		9	8	ã	8	ě	9	9	8	4	5	5	2	ĩ	-	-	-	2	1	3	4	8
	CR = 1	12 9	9	9	9	ě	ě	ğ	9	9	9	ě	7	5	8	7	5	2	1	1	-	1	5	4	ă
	LU = 1	13 9	9	9	9	9	9	9	9	9	9	9	é	5	7	5	2	ĩ	-	-	-	2	2	2	ă
	G = 1	14 2	2	2	1	-	1*	1*	-	-	-	-	-	-	-	5	7	8	8	7	7	8	6	2	4
	T - 1	15 4	Ē	4	-	1+	1+	1	1	_		_		_		6	-	ě	ě	é	-	ě	Ă	Ã	Ā
EU	112 - 1	16 4	2	2	5	2	1+	-	-	_	_	-	_	-	-	1	÷		2	é	É	ă	4	2	1
	IIN - 1	17 2	7	8	7	5	1	-	_	-	_	-	_	-	-	1*	2	7	6	Ă	2	1	1	-	-
	1129 - 1	19 9	é	ă	é	Ē	1	_	_	_	_	_	_	_	_	1+	1+	<i>.</i>	-	-	-	-	-	_	4
	1120 - 1	10 0		ă			Ē	5	_	_	_	-	_	-	-	1	2	1	1	5	-		-	-	- -
	4V - 3	20 6		é	-	ĩ	1+	2.	_	_	_	-	_	-	-	-	Ê	-	-	7	é	É	Ĕ	Ē	é
	47 - 2	21 5		2		2	2.	1.	-	-	_	-	1+	1+	-	4+	6	ź	÷	é	Ē	4	4	5	Ē
		61 5 22 6		2	é	2	2-	1.	-	-	-	1.	1.	1-	1.	1.	1	4	4	2	2	-	-	1	1
	VO = 1	64 0 33 0			2	5	-	-	-	-	-	1-	1.	-	1.	1~	1.	~	1		5	1	4	-	÷.
	JT = 1	63 C	2	ŝ	-	ź	1	-	-		-		1.	-	T.	-	- T ~	4	-	-	-	-	*	ź	2
TA	VR2 = 2	24 8	5	5	5	5	5	2	-	1*	-	1*	1	-	-	-	3	9	9	8	6	2	6	5	7
JA	JAL = 1	45 /			0	0	0	4	-	-	- 1.4	- 1+	- 14	- 1+	- 14	-	-	3	1	4	0	1		0	6
	HS = 1	40 0 27 4		5	~	4	4	-	-		1.	1.*		1*	1.	-	-	8	8	8	2	-	-	4	2
	D0 = 2	47 4 00 0		3	3	4	5	*	1	1*	-	1	2	*	1	-	5	9	9	8	2	4	5	5	5
	IB = 2	28 8 20 0			1	-	Ť	2	1	-	÷	2	2	3	-	-	3	8	8	8	6	Ť	-	3	2
	VK6 = 2	29 2	* 2	* 1*	1	1	2	4	4	-	5		8	8	~	-	8	8	8	6	3	2	T	-	Τ*
	VK3 = 3	- 00			4 .		8	8	<i>.</i>			8	, y			5	8	÷.	*	÷.	5	~	-	T.*	-
	KH6 = .	3T 3	+ 9	+ 9+	9+	9+	8	2	9+	9	9	9	9+	9+	9	8	-	9+	9+	9+	9	9	3	9	9
	KH8 = 3	32 6	8	9	9	9	9	9	9	9	8	9	9	9	8	7	5	4	9	8	6	6	4	4	5
	CN = 3	33 3	3	6	5	1	1*	1*	1	1	-	-	-	-	3	6	6	9	7	6	6	7	2	7	4
	SU = 3	34 7	7	7	7	1	1*	2*	1*	-	-	-	-	-	-	2	6	7	7	6	6	6	5	6	7
	6W = 3	35 8	9	9	7	4	4	4	5	5	1	-	-	-	4	3	2	3	4	4	5	6	2	8	9
	D2 = 3	36 8	8	8	6	3	2	1	2	1	-	-	-	-	1	-	4*	8	4	4	5	5	5	7	8
	5Z = 3	37 8	8	6	4	3*	2*	2*	1*	-	-	-	-	1*	1*	5	7*	6*	7	2	3	3	5	7	8
	ZS6 = 3	38 8	8	8	4	2	3*	2*	1	1	-	-	-	2*	2*	2*	6*	6*	6*	4*	1	3	4	8	7
	FR = 3	39 8	7	8	6	6*	5*	3*	1*	-	-	1*	3*	2*	2*	7*	7	7	7	7	5	5	6	7	8
	FJL = 4	40 9	9	8	7	1	-	-	-	-	-	-	1*	-	-	1*	2	8	8	8	8	8	8	9	9
	Zone	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
		101	C	>				*	= L	ongp	ath														
	Expecte	ed sig	nal	level	s us:	ing	1500	Wa	nd 1	2 dB	1 180	otro	pic a	ante	nnag										

20-meter band, 24 hours, 40 CQ Zones around the world.

• The *VOACAP* developers recommend use of SNR, but I show signal strength in S-units. Why?

- The *VOACAP* developers recommend use of SNR, but I show signal strength in S-units. Why?
- Hams understand S-units, not SNR in 1-Hz BW.

- The *VOACAP* developers recommend use of SNR, but I show signal strength in S-units. Why?
- Hams understand S-units, not SNR in 1-Hz BW.
- Especially on the lower bands, the SNR is determined largely by "powerline" types of noise and by thunderstorm activity.

- The *VOACAP* developers recommend use of SNR, but I show signal strength in S-units. Why?
- Hams understand S-units, not SNR in 1-Hz BW.
- Especially on the lower bands, the SNR is determined largely by "powerline" types of noise and by thunderstorm activity.

• Assuming low powerline noise, there are those rare nights when there is no thunderstorm noise and an S5 signal on 80 meters sounds like it is S9!
Why Signal Strength Instead of SNR?

- The *VOACAP* developers recommend use of SNR, but I show signal strength in S-units. Why?
- Hams understand S-units, not SNR in 1-Hz BW.
- Especially on the lower bands, the SNR is determined largely by "powerline" types of noise and by thunderstorm activity.
- Assuming low powerline noise, there are those rare nights when there is no thunderstorm noise and an S5 signal on 80 meters sounds like it is S9!
- However, if thunderstorm QRN is S9, you know you can't hear an S5 signal.

• One band per page, all 24 hours, all 40 CQ Zones around the world.

• One band per page, all 24 hours, all 40 CQ Zones around the world.

• From a particular transmitting QTH you can determine when a band is open to various areas of the world.

- One band per page, all 24 hours, all 40 CQ Zones around the world.
- From a particular transmitting QTH you can determine when a band is open to various areas of the world.

• So-called "WARC bands" (30, 17 and 12 meters) have been added to 160, 80, 40, 20, 15 and 10 meter bands found in the earlier sets of tables.

30 Meters: Oct., CA (San Francisco), for SSN = Low, Sigs in S-Units. By N6BV, ARRL.

	UTC	>																						
Zone	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
KL7 = 01	9	9	9	9+	9+	9+	9	9	9	9	9	9	9	8	9	9+	9	9	9	8	8	8	8	9
VO2 = 02	8	8	8	7	5	4	4	4	3	-	-	-	3	8	8	6	5	3	2	3	5	6	7	8
W6 = 03	9	8	8	5	5	5	5	5	5	5	5	5	5	5	5	5	8	9	8	9	9	9	9	9
W9 = 04	9+	9+	9+	9+	9+	9	9+	9+	9+	9+	9	9	9	9+	9+	9	8	7	5	5	7	8	8	9
W3 = 05	9	9	9	6	4	5	5	5	6	4	9	9	2	9	8	8	7	5	4	4	5	7	8	8
XE1 = 06	9	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9	8	6	5	2	4	5	7	8
TI = 07	8	9	9	9	9	9	9	9	9	9	9	6	9	9	8	5	2	1	-	-	-	1	5	7
VP2 = 08	9	9	9	8	9	9	9	9	9	8	8	8	8	8	5	1	1	-	-	-	-	1	6	7
P4 = 09	8	9	9	9	9	9	9	9	9	9	8	8	8	8	6	2	1	-	-	-	-	2	6	7
HC = 10	8	8	9	9	9	9	9	9	9	8	5	4	8	8	5	2	-	-	-	-	-	-	2	7
PY1 = 11	5	7	7	7	8	8	7	8	7	6	5	5	1	-	-	-	-	-	-	-	-	-	1	2
CE = 12	5	7	8	8	8	8	8	9	9	8	8	8	6	5	1	-	-	-	-	-	-	-	-	2
LU = 13	5	7	7	8	8	8	8	8	8	7	7	7	5	1	-	-	-	-	-	-	-	-	-	2
G = 14	6	6	7	7	5	5	5	5	6	5	3	1	2	4	3	5	2	1	1	1	2	2	5	6
I = 15	6	7	7	6	5	5	7	7	6	5	2	1	2	2	2	4	4	1	1	-	1	2	4	5
UA3 = 16	5	5	5	5	6	6	6	5	4	4	3	2	2	5	6	5	4	4	2	2	3	4	5	5
UN = 17	4	2	3	3	1	2	2	1	1	2	3	4	4	4	6	7	7	5	4	2	1	1	2	3
UA9 = 18	4	7	5	5	4	4	4	2	2	3	4	3	3	4	6	6	5	4	2	1	1	1	2	2
UA0 = 19	3	3	4	5	6	7	7	7	7	8	8	8	8	7	7	8	8	7	6	4	3	2	1	2
4X = 20	6	6	6	6	5	5	4	3	2	1	1	1	1	2	2	5	2	1	1	1	-	1	3	5
HZ = 21	5	5	4	4	5	2	1	_	-	-	-	-	ī	3	4	4	2	2	1	-	1	1	2	4
VU = 22	2	2	2	1	1	_	_	-	-	-	1	4	4	5	5	5	6	3	2	1	_	1	1	2
JT = 23	2	3	4	4	3	3	4	4	4	5	5	5	5	5	6	8	7	6	5	3	2	2	2	2
VR2 = 24	-	-	-	_	-	1	2	4	5	6	8	8	8	8	7	8	8	7	5	4	2	1	-	1
JA1 = 25	1	1	2	3	5	6	7	6	7	7	7	8	8	6	5	8	8	7	6	5	2	1	-	1
HS = 26	-	-	-	-	-	-	-	-	2	3	5	6	6	6	6	7	6	5	4	2	1	-	-	-
DU = 27	-	-	-	-	-	-	2	5	6	7	8	8	8	8	8	8	8	7	5	3	1	-	-	-
YB = 28	1*	-	-	-	-	-	_	_	3	5	7	8	8	8	7	7	6	5	3	1	_	-	-	-
VK6 = 29	-	-	-	-	-	-	-	1	4	6	7	8	8	8	8	7	6	2	1	-	-	-	-	-
VK3 = 30	-	-	-	-	-	2	4	7	8	8	8	9	9	8	8	7	6	3	1	-	-	-	-	-
KH6 = 31	7	8	9	9	9+	9+	9	8	7	7	8	9	9	7	5	9	9	9	8	6	з	2	2	3
KH8 = 32	-	1	3	6	8	8	9	9	9	9	9	9	9	8	8	7	7	5	2	-	-	-	-	-
CN = 33	6	7	8	8	8	7	5	7	7	6	3	1	1	1	1	_	_	_	1	1	1	1	2	6
SU = 34	7	6	6	6	6	5	5	3	2	1	1	-	1	2	1	6	1	2	1	-	-	1	3	5
6W = 35	7	8	8	8	8	8	8	8	8	7	5	2	1	-	-	-	-	-	-	-	-	1	4	6
D2 = 36	5	6	6	7	7	6	5	4	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1	3
5Z = 37	4	5	4	5	5	3	1	-	-	-	-	-	-	1*	2*	6	1*	1	1	-	-	-	1	2
ZS6 = 38	5	6	6	7	7	5	3	1	-	-	-	-	-	-	1*	1*	2*	-	-	-	-	-	-	2
FR = 39	5	3	2	1	1	-	-	-	-	-	-	-	-	2	2	2	з	1	-	-	-	-	1	1
FJL = 40	6	6	5	6	7	5	3	2	2	2	2	1	1	2	7	7	6	6	5	5	2	5	4	5
Zone	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	UTC	>					*	= L<	ongpa	ath														
		-																						

Expected signal levels using 1500 W and 6 dBi isotropic antennas.

Example of new 30-meter table

• The antennas used in *VOACAP* to predict signal levels are isotropics, with gain. They emulate the antennas used in older tables (100' dipoles for 80/40, 3L20 at 100', 4L15, 4L10 at 60').

- The antennas used in *VOACAP* to predict signal levels are isotropics, with gain. They emulate the antennas used in older tables (100' dipoles for 80/40, 3L20 at 100', 4L15, 4L10 at 60').
- These antennas cover all the way down to 1° elevation, simulating a mountain-top location.

- The antennas used in *VOACAP* to predict signal levels are isotropics, with gain. They emulate the antennas used in older tables (100' dipoles for 80/40, 3L20 at 100', 4L15, 4L10 at 60').
- These antennas cover all the way down to 1° elevation, simulating a mountain-top location.
- The long-path algorithm has been improved compared to the older tables, allowing many weak long-path signals to show.

- The antennas used in *VOACAP* to predict signal levels are isotropics, with gain. They emulate the antennas used in older tables (100' dipoles for 80/40, 3L20 at 100', 4L15, 4L10 at 60').
- These antennas cover all the way down to 1° elevation, simulating a mountain-top location.
- The long-path algorithm has been improved compared to the older tables, allowing many weak long-path signals to show.
- Gain antennas are assumed to be optimally oriented to/from each QTH. This is important.

• Some have questioned why I chose "superstations on mountain tops," with 1500 W of transmit power.

- Some have questioned why I chose "superstations on mountain tops," with 1500 W of transmit power.
- They ask, "What about us little guns with 100 W and a dipole up 30 feet?"

- Some have questioned why I chose "superstations on mountain tops," with 1500 W of transmit power.
- They ask, "What about us little guns with 100 W and a dipole up 30 feet?"
- Well, if I had tailored the predictions specifically for the little gun, many of the weaker signals shown in the tables would simply disappear.

- Some have questioned why I chose "superstations on mountain tops," with 1500 W of transmit power.
- They ask, "What about us little guns with 100 W and a dipole up 30 feet?"
- Well, if I had tailored the predictions specifically for the little gun, many of the weaker signals shown in the tables would simply disappear.
- And with nothing showing, you wouldn't have *any idea* that propagation is even possible.

1. Subtract 2 S-units for a 100' high dipole instead of a 3L20 Yagi at 100'.

- 1. Subtract 2 S-units for a 100' high dipole instead of a 3L20 Yagi at 100'.
- Subtract 3 S-units for dipole at 50' instead of 3L20 Yagi at 100'.

- 1. Subtract 2 S-units for a 100' high dipole instead of a 3L20 Yagi at 100'.
- Subtract 3 S-units for dipole at 50' instead of 3L20 Yagi at 100'.
- Subtract 3 S-units for a dipole at 30' instead of a 4L15 or 4L10 Yagi at 60'.

- 1. Subtract 2 S-units for a 100' high dipole instead of a 3L20 Yagi at 100'.
- Subtract 3 S-units for dipole at 50' instead of 3L20 Yagi at 100'.
- Subtract 3 S-units for a dipole at 30' instead of a 4L15 or 4L10 Yagi at 60'.
- 4. Subtract 1 S-unit for a dipole at 50 feet rather than a dipole at 100 feet (160 to 30 meters).

- 1. Subtract 2 S-units for a 100' high dipole instead of a 3L20 Yagi at 100'.
- Subtract 3 S-units for dipole at 50' instead of 3L20 Yagi at 100'.
- Subtract 3 S-units for a dipole at 30' instead of a 4L15 or 4L10 Yagi at 60'.
- 4. Subtract 1 S-unit for a dipole at 50 feet rather than a dipole at 100 feet (160 to 30 meters)
- 5. Subtract 3-S units for 100 W rather than 1500 W. Subtract 6-S units for 5 W rather than 1500 W.

- 1. Subtract 2 S-units for a 100' high dipole instead of a 3L20 Yagi at 100'.
- Subtract 3 S-units for dipole at 50' instead of 3L20 Yagi at 100'.
- Subtract 3 S-units for a dipole at 30' instead of a 4L15 or 4L10 Yagi at 60'.
- 4. Subtract 1 S-unit for a dipole at 50 feet rather than a dipole at 100 feet (160 to 30 meters)
- 5. Subtract 3-S units for 100 W rather than 1500 W. Subtract 6-S units for 5 W rather than 1500 W.
- 6. These are for both ends of a circuit, RX and TX. $_{55}$

20 Meters: Oct., CA (San Francisco), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

		UTC	>																							
Zone		00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
KL7 =	01	9+	9+	9+	9+	9+	8	4	1	1	1	1	-	-	-	-	7	9+	9+	9+	9+	9+	9+	9+	9+	
VO2 =	02	9	7	1	-	-	-	-	-	-	1*	-	1*	1*	-	9	9	9	9	7	9	9	9	9	9+	
W6 =	03	5	6	7	8	8	8	8	8	8	8	8	8	8	8	7	7	6	6	6	5	5	5	6	5	
W9 =	04	9+	9+	9+	9	5	4	2	5	7	6	1	1*	1*	7	9+	9+	9+	9+	9+	9+	9+	9	9+	9+	
W3 =	05	9+	9	2	9	7	7	8	8	9	8	2	1	7	-	9	9+	9	9	9	9	9	9	9+	9+	
XB1 =	06	9+	9+	9+	9+	9	9	9	9+	9+	9+	9+	9	8	9+	9+	9+	9+	9	9	9	9	9	9+	9+	
TI =	07	9+	9+	9	4	1	1	1	5	7	6	1	-	-	9	9+	9	9	7	5	5	6	7	9	9+	
VP2 =	08	9+	9	4	1	-	-	1	4	3	-	-	-	1	9	9	8	8	4	4	6	7	8	9	9+	
P4 =	09	9+	9	6	2	1	1	2	6	6	1	-	-	1	9	9	9	8	4	4	4	6	7	9	9	
HC =	10	9+	9+	9+	8	5	5	7	6	6	2	-	-	2	9	9	8	6	3	2	2	4	6	8	9	
PY1 =	11	9	9	9	9	8	8	8	9	9	9	8	4	5	5	2	1	-	-	-	2	1	3	4	8	
CE =	12	9	9	9	9	9	9	9	9	9	9	9	7	5	8	7	5	2	1	1	-	1	5	4	8	
LU =	13	9	9	9	9	9	9	9	9	9	9	9	6	5	7	5	2	1	-	-	-	2	2	2	8	
G =	14	2	2	2	1	-	1*	1*	-	-	-	-	-	-	-	5	7	8	8	7	7	8	6	2	4	
I =	15	4	5	4	2	1*	1*	1	1	-	-	-	-	-	-	6	7	8	8	6	7	6	4	4	4	
UA3 =	16	4	2	2	2	2	1*	-	-	-	-	-	-	-	-	1		8	7	6	5	4	4	2	1	
UN =	17	2	7	8	7	5	1	-	-	-	-	-	-	-	-	1*	3	7	6	4	2	1	1	-	-	
UA9 =	18	8	8	8	8	5	1	-	-	-	-	-	-	-	-	1*	1*	-	-	-	-	-	-	-	4	
UA0 =	19	8	8	8	8	8	6	5	-	-	-	-	-	-	-	-	2	1	1	5	5	7	8	8	8	
4X =	20	6	6	6	6	1	1*	2*	-	-	-	-	-	-	-	5	6	7	7	7	6	5	5	5	6	
HZ =	21	5	5	6	7	2	2*	1*	-	-	-	-	1*	1*	-	4*	6	7	7	6	5	4	4	5	5	
VU =	22	6	7	7	6	3	-	-	-	-	-	1*	1*	-	1*	1*	1*	7	7	7	3	3	2	1	1	
JT =	23	8	8	8	7	7	4	-	-	-	-	-	1*	-	1*	-	1*	2	1	-	-	1	4	7	8	
VR2 =	24	8	5	5	5	5	5	2	-	1*	-	1*	1	-	-	-	3	9	9	8	6	2	6	5	7	
JA1 =	25	7	7	8	8	8	8	2	-	-	-	-	-	-	-	-	-	3	1	2	8	8	7	8	7	
HS =	26	6	6	5	2	2	2	-	-	-	1*	1*	1*	1*	1*	-	-	8	8	8	6	1	-	2	6	
DU =	27	4	3	3	3	4	5	4	1	1*	1	1	2	4	1	-	5	9	9	8	5	4	5	5	5	
YB =	28	8	3	1	1	-	1	2	1	-	1	2	2	3	1	-	3	8	8	8	6	1	1	3	2	
VK6 =	29	2*	2*	1*	1	1	2	4	4	4	5	7	8	8	7	4	8	8	8	6	3	2	1	-	1*	
VK3 =	30	-	1	2	4	6	8	8	7	7	7	8	9	8	7	5	8	8	4	1	5	2	-	1*	-	
КН6 =	31	9+	9+	9+	9+	9+	8	2	9+	9	9	9	9+	9+	9	8	-	9+	9+	9+	9	9	9	9	9	
КН8 =	32	6	8	9	9	9	9	9	9	9	8	9	9	9	8	7	5	4	9	8	6	6	4	4	5	
CN =	33	3	3	6	5	1	1*	1*	1	1	-	-	-	-	3	6	6	9	7	6	6	7	7	7	4	
SV =	34	7	7	7	7	1	1*	2*	1*	-	-	-	-	-	-	2	6	7	7	6	6	6	5	6	7	
6W =	35	8	9	9	7	4	4	4	5	5	1	-	-	-	4	3	2	3	4	4	5	6	7	8	9	
D2 =	36	8	8	8	6	3	2	1	2	1	-	-	-	-	1	-	4*	8	4	4	5	5	5	7	8	
5Z =	37	8	8	6	4	3*	2*	2*	1*	-	-	-	-	1*	1*	5	7*	6*	7	2	3	3	5	7	8	
ZS6 =	38	8	8	8	4	2	3*	2*	1	1	-	-	-	2*	2*	2*	6*	6*	6*	4*	1	3	4	8	7	
FR =	39	8	7	8	6	6*	5*	3*	1*	-	-	1*	3*	2*	2*	7*	7	7	7	7	5	5	6	7	8	
FJL =	40	9	9	8	7	1	-	-	-	-	-	-	1*	-	-	1*	2	8	8	8	8	8	8	9	9	
Zone		00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
		UTC	>					*	= Lc	man	ath															

Expected signal levels using 1500 W and 12 dBi isotropic antennas.

20 meters into Zone 15 at 15 UTC October, W6.

• W6, San Francisco, on 20 meters for Low SSN level, month of October, to Italy, Zone 15, 15 UTC.

- W6, San Francisco, on 20 meters for Low SSN level, month of October, to Italy, Zone 15, 15 UTC.
- From the table, signal for "big-gun" station is S7.

- W6, San Francisco, on 20 meters for Low SSN level, month of October, to Italy, Zone 15, 15 UTC.
- From the table, signal for "big-gun" station is S7.
- Now, assume 20-meter TX station: A dipole at 50' feet and 100 W, instead of 3L20 Yagi at 100' and 1500 W. (This assumes the RX station has a 3L20 at 100'.)

S7 - 3 (dipole 50') - 3 (100 W) = S1. This won't make you stand out in a pileup...

• Another example, this time for 3L20 Yagi at 100' and 5 W:

S7 - 6 = S1, showing that QRP is challenging, even with big antennas!

But you knew that already.

Planning for a Contest

Well, duh... But wait a moment, there is a contest equivalent.

Planning for a Contest

"The frequency is in use; thank you for asking."

"Stay out of my lane." "Stay off my frequency"... same thing. We don't want a crash!

Planning

• Solar Cycle 24 is finally ramping up, fitfully.

Planning

- Solar Cycle 24 is finally ramping up, fitfully.
- Now that we are blessed with more band choices, how does an all-band single-operator plan *where* to be and *when* to be there?

Planning

- Solar Cycle 24 is finally ramping up, fitfully.
- Now that we are blessed with more band choices, how does an all-band single-operator plan *where* to be and *when* to be there?

• First, you need to assess whether your station is strong enough to CQ (run rate) or whether you must S&P (search and pounce).

• Effective running into Europe takes a signal level of at least S8 from the USA, often even S9.

• Effective running into Europe takes a signal level of at least S8 from the USA, often even S9.

• Why S8? Because European pileups quickly degenerate into chaos because they can't easily hear the CQing station over all the other Europeans calling (and calling, and calling...).

• Effective running into Europe takes a signal level of at least S8 from the USA, often even S9.

• Why S8? Because European pileups quickly degenerate into chaos because they can't easily hear the CQing station over all the other Europeans calling (and calling, and calling...).

• JAs are much more polite. Also US stations.

• Effective running into Europe takes a signal level of at least S8 from the USA, often even S9.

• Why S8? Because European pileups quickly degenerate into chaos because they can't easily hear the CQing station over all the other Europeans calling (and calling, and calling...).

• JAs are much more polite. Also US stations.

• "Packet pileups" on CW can really slow the rate down — everybody's on *exactly* the same frequency (except for the smart ones, who tune off several hundred Hz and then call). Hint, hint. Contest Band Planning Strategies Single-Operator, All-Band, SO2R, WPX CW

• I'm going to use WPX CW as an example of planning a contest strategy using propagation predictions.

Contest Band Planning Strategies Single-Operator, All-Band, SO2R, WPX CW

- I'm going to use WPX CW as an example of planning a contest strategy using propagation predictions.
- This example will be from San Francisco, CA, to the rest of the world.

Rules for CQ WPX Single-Operator, All-Band, SO2R, WPX CW

• Anyone can be a multiplier in WPX. The first WB6 is just as valuable a multiplier as a JT1.
- Anyone can be a multiplier in WPX. The first WB6 is just as valuable a multiplier as a JT1.
- Running rate is very important. If you can CQ effectively, let the mults come to you in WPX.

- Anyone can be a multiplier in WPX. The first WB6 is just as valuable a multiplier as a JT1.
- Running rate is very important. If you can CQ effectively, let the mults come to you in WPX.
- QSOs from USA to USA count as one point, no matter the band. (But that's better than zero points for USA, as it used to be.)

- Anyone can be a multiplier in WPX. The first WB6 is just as valuable a multiplier as a JT1.
- Running rate is very important. If you can CQ effectively, let the mults come to you in WPX.
- QSOs from USA to USA count as one point, no matter the band. (But that's better than zero points for USA, as it used to be.)
- QSOs to other continents are worth more on 20/15/10 meters they're worth 3 points. W6s should run Europe or JA, if they can.

• QSOs on 160/80/40 meters to other continents are worth six points (vs three points on the higher bands).

- QSOs on 160/80/40 meters to other continents are worth six points (vs three points on the higher bands).
- JAs can work 160 only on CW (not on SSB).

- QSOs on 160/80/40 meters to other continents are worth six points (vs three points on the higher bands).
- JAs can work 160 only on CW (not on SSB).
- Even though Ws are only worth one point, they could easily be new prefix multipliers.

- QSOs on 160/80/40 meters to other continents are worth six points (vs three points on the higher bands).
- JAs can work 160 only on CW (not on SSB).
- Even though Ws are only worth one point, they could easily be new prefix multipliers.
- Again, predicted signals > S8 or S9 allow you to CQ and run rate.

- QSOs on 160/80/40 meters to other continents are worth six points (vs three points on the higher bands).
- JAs can work 160 only on CW (not on SSB).
- Even though Ws are only worth one point, they could easily be new prefix multipliers.
- Again, predicted signals > S8 or S9 allow you to CQ and run rate.

• I print out a Summary propagation prediction to plan for a contest. I use a yellow highlighter to flag interesting openings, especially S8 or greater. 80

May, CA (San Francisco), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

			80	Met	ter	5				40	Met	ers	3				20	Met	ters	5				15	Me	ters	3				10	Met	cer	5		
UTC	EU	FE	SA	AF	AS	oc	NA	EU	FE	$s \mathtt{A}$	AF	$\mathtt{A}S$	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	UTC
0	-	-	-	-	-	-	9+	1	-	7	2	-	-	9+	7	8	9	9	8	9	9+	1	4*	9+	8	1	8	9+	-	2*	8	-	1*	8	6	0
1	-	-	3	-	-	-	9+	4	-	8	5	-	2	9+	7	9	9+	9	8	9+	9+	1	6*	9+	7	4	9	9+	-	4*	7	-	2*	8	6	1
2	-	-	7	2	-	-	9+	5	-	8	6	-	6	9+	8	8	9+	9	8	9+	9+	2	5	9	5	5*	9	9+	-	3*	3	-	3*	9	8	2
3	2	-	8	5	-	4	9+	3	-	8	8	-	8	9+	8	8	9+	9	8	9+	9+	4*	7	9	6	7	9	9+	-	1*	-	-	4*	8	6	3
4	1	-	9	6	-	8	9+	7	1	9	8	-	9	9+	8	8	9+	9	8	9+	9+	5*	7	9	6*	7*	9	9	1*	1	-	1*	<mark>5*</mark>	7	6	4
5	2	-	8	7	-	9	9+	8	2	9	8	-	9	9+	8	9	9+	9	8	9+	9+	5*	7	6	8*	5*	9	8	1*	-	-	2*	1*	8	6	5
6	2	-	8	6	-	8	9+	6	3	9	8	-	9+	9+	8	9	9+	7	8	9+	9+	5*	6	2	8*	3*	9+	8	-	-	-	1*	-	6	7	6
7	-	-	8	2	-	9	9+	6	5	9	8	-	9+	9+	7	9	9	5	8	9+	9+	2*	4	1	4*	1*	9	8						-	7	7
8	-	1	8	1	-	9	9+	3	8	9	6	1	9+	9+	5	9	9	2*	8	9	9+	1*	3	1	2*	-	9	8	"	NA	"	-	-	-	7	8
9	-	6	8	-	-	9+	9+	2	8	9	2	2	9+	9+	2	9	8	3*	8	9	9+	-	1	-	1*	-	8	8	in	ċ	id		-	-	7	9
10	-	8	8	-	-	9+	9+	1	9	9	1	4	9+	9+	-	9	8	5*	5	9	9	-	-	-	-	-	6	8	111	ļ Ļ I	ųu	C S	-	-	7	10
11	-	8	7	-	-	9+	9+	1	9	9	-	5	9+	9+	-	8	9	6*	2*	9	9	-	-	1	1*	-	3	8	-1	/3,	,-V	49	,	-	7	11
12	-	8	5	-	2	9+	9+	-	9	8	-	5	9+	9+	2	5	8	6*	1*	9+	9	-	-	-	-	-	1	8	W	76	-	-	-	-	7	12
13	-	8	1	-	1	9	9+	-	9	6	-	8	9+	9+	6	5	9	6	3	9+	9+	-	1*	3	-	-	-	8	-		-	-	-	-	7	13
14	-	6	-	-	-	9	9+	-	8	3	1*	5	9	9	7	8	9	8	8	9+	9+	-	2*	6	3	1*	1*	8	Α	5	-	-	-	-	7	14
15	-	2	-	-	-	6	9+	-	7	-	-	4	9	9+	8	9	8	8	8	9	9+	1*	5*	7	4	5*	6	9	-	-	-	-	-	-	6	15
16	-	-	-	-	-	2	9+	-	6	-	-	2	8	9+	8	9	9	8	8	9+	9+	6*	4*	8	5*	7*	9	9	-	-	-	-	-	-	6	16
17	-	-	-	-	-	-	9+	-	3	-	-	1	6	9+	8	9	8	8	8	9+	9+	5*	6	7	4*	7*	9+	8	-	-	-	-	1*	-	6	17
18	-	-	-	-	-	-	9+	-	1	-	-	-	2	9+	8	8	7	8	7	9	9+	4*	2	8	5*	4*	9+	9	2*	-	-	-	-	1	6	18
19	-	-	-	-	-	-	9+	-	-	-	-	-	1	9+	7	8	7	7	6	9	9+	3*	1	8	3*	2*	9	9	1*	-	1	-	-	-	6	19
20	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	7	8	7	7	6	9	9+	2*	5	8	2*	1*	9	9+	-	-	5	1*	-	-	6	20
21	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	8	9	8	8	6	9	9+	1*	6	9	5	5	9+	9+	-	-	7	1*	-	1	6	21
22	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	8	8	9	8	7	8	9+	5	6	9	6	2	9+	9+	-	-	8	-	-	5	6	22
23	-	-	-	-	-	-	9+	-	-	2	1	-	-	9+	8	8	9	8	7	9	9+	3	6	9+	7	2	8	9+	-	1*	8	-	-	8	6	23
	EU	FE	SA	AF	AS	oc	NA	EU	FE	$s \mathtt{A}$	AF	\mathtt{AS}	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	0C	NA	EU	FE	SA	AF	AS	oc	NA	

Start on the highest band, since openings are shortest there.⁸¹

Contest Band-Planning Strategies

Single-Operator, All-Band, SO2R, WPX CW

10 Meters: May, CA (San Francisco), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
HS = 26 - 1* 3* 1*
DU = 27 2* 1* 1* - 1 1
YB = 28 - 2* - 1
200 = 30
UTC> $* = Longpath$

Expected signal levels using 1500 W and 14 dBi isotropic antennas.

Looking at the details on 10 meters.

May, CA (San Francisco), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

	-		80	Mei	ter	s				40	Met	ters	3				20	Met	ters	5				15	Met	ters	3				10	Met	ers	3		
UTC	EU	FE	SA	AF	$\mathbf{A}S$	oc	NA	EU	FE	SA	AF	AS	OC	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	UTC
0	-	-	-	-	-	-	9+	1	-	7	2	-	-	9+	7	8	9	9	8	9	9+	1	4*	9+	8	1	8	9+	-	2*	8	-	1*	8	6	0
1	-	-	3	-	-	-	9+	4	-	8	5	-	2	9+	7	9	9+	9	8	9+	9+	1	6*	9+	7	4	9	9+	-	4*	7	-	2*	8	6	1
2	-	-	7	2	-	-	9+	5	-	8	6	-	6	9+	8	8	9+	9	8	9+	9+	2	5	9	5	<mark>5*</mark>	9	9+	-	3*	3	-	3*	9	8	2
3	2	-	8	5	-	4	9+	3	-	8	8	-	8	9+	8	8	9+	9	8	9+	9+	<mark>4*</mark>	7	9	6	7	9	9+	-	1*	-	-	4*	8	6	3
4	1	-	9	6	-	8	9+	7	1	9	8	-	9	9+	8	8	9+	9	8	9+	9+	5*	7	9	6*	<mark>7*</mark>	9	9	1*	1	-	1*	5*	7	6	4
5	2	-	8	7	-	9	9+	8	2	9	8	-	9	9+	8	9	9+	9	8	9+	9+	5*	7	6	8*	5*	9	8	1*	-	-	2*	1*	8	6	5
6	2	-	8	6	-	8	9+	6	3	9	8	-	9+	9+	8	9	9+	7	8	9+	9+	<mark>5*</mark>	6	2	8*	3*	9+	8	-	-	-	1*	-	6	7	6
7	-	-	8	2	-	9	9+	6	5	9	8	-	9+	9+	7	9	9	5	8	9+	9+	2*	4	1	4*	1*	9	8	-	-	-	-	-	-	7	7
8	-	1	8	1	-	9	9+	3	8	9	6	1	9+	9+	5	9	9	2*	8	9	9+	1*	3	1	2*	-	9	8	-	-	-	-	-	-	7	8
9	-	6	8	-	-	9+	9+	2	8	9	2	2	9+	9+	2	9	8	3*	8	9	9+	-	1	-	1*	-	8	8	-	-	-	-	-	-	7	9
10	-	8	8	-	-	9+	9+	1	9	9	1	4	9+	9+	-	9	8	5*	5	9	9	-	-	-	-	-	6	8	-	-	-	-	-	-	7	10
11	-	8	7	-	-	9+	9+	1	9	9	-	5	9+	9+	-	8	9	6*	2*	9	9	-	-	1	1*	-	3	8	-	-	-	-	-	-	7	11
12	-	8	5	-	2	9+	9+	-	9	8	-	5	9+	9+	2	5	8	6*	1*	9+	9	-	-	-	-	-	1	8	-	-	-	-	-	-	7	12
13	-	8	1	-	1	9	9+	-	9	6	-	8	9+	9+	6	5	9	6	3	9+	9+	-	1*	3	-	-	-	8	-	-	-	-	-	-	7	13
14	-	6	-	-	-	9	9+	-	8	3	1*	5	9	9	7	8	9	8	8	9+	9+	-	2*	6	3	1*	1*	8	-	-	-	-	-	-	7	14
15	-	2	-	-	-	6	9+	-	7	-	-	4	9	9+	8	9	8	8	8	9	9+	1*	<mark>5*</mark>	7	4	5*	6	9	-	-	-	-	-	-	6	15
16	-	-	-	-	-	2	9+	-	6	-	-	2	8	9+	8	9	9	8	8	9+	9+	6*	<mark>4*</mark>	8	5*	7*	9	9	-	-	-	-	-	-	6	16
17	-	-	-	-	-	-	9+	-	3	-	-	1	6	9+	8	9	8	8	8	9+	9+	5*	6	7	4*	<mark>7*</mark>	9+	8	-	-	-	-	1*	-	6	17
18	-	-	-	-	-	-	9+	-	1	-	-	-	2	9+	8	8	7	8	7	9	9+	4*	2	8	5*	4*	9+	9	2*	-	-	-	-	1	6	18
19	-	-	-	-	-	-	9+	-	-	-	-	-	1	9+	7	8	7	7	6	9	9+	3*	1	8	3*	2*	9	9	1*	-	1	-	-	-	6	19
20	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	7	8	7	7	6	9	9+	2*	5	8	2*	1*	9	9+	-	-	5	1*	-	-	6	20
21	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	8	9	8	8	6	9	9+	1*	6	9	5	5	9+	9+	-	-	7	1*	-	1	6	21
22	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	8	8	9	8	7	8	9+	5	6	9	6	2	9+	9+	-	-	8	-	-	5	6	22
23	-	-	-	-	-	-	9+	-	-	2	1	-	-	9+	8	8	9	8	7	9	9+	3	6	9+	7	2	8	9+	-	1*	8	-	-	8	6	23
	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	

Next, look at 15 meters, including long-path to Europe.

Contest Band-Planning Details

Single-Operator, All-Band, SO2R, WPX CW

15 Meters: May, CA (San Francisco), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

	U	TC	>																							
Zone	0	0	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
KL7 = 03	1	1	2	5	9	9	8	5	2	1	-	-	-	-	-	-	-	4	5	5	3	2	3	3	1	
VO2 = 02	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1*	1*	1*	2*	1*	1*	1*	1*	
W6 = 03	3	7	7	6	6	7	7	8	8	8	8	8	8	8	8	8	7	7	7	7	7	6	6	7	7	
W9 = 04	4	4	6	9	8	2	-	-	-	-	-	-	-	-	-	-	1	1	-	-	-	1	1	1	2	
W3 = 05	5	9+	2*	1	9	5	-	-	-	-	-	-	-	-	1	1	8	8	8	8	9	9	9	9	9	
XE1 = 06	6	9+	9+	9+		9	6	1*	-	-	-		-	-	2	7	9	1	8	9	9	9+	9+	9+	9+	
TI = 07	7	9+	9+	8	4	3*	1+	-	-	-	-	-	-	-	-	-	-	_	-	-	2	5	6	8	9	
VP2 = 08	8	7	8	6*	4*	3*	2*		-	-	I R	661	· he	t fa	r-		-	-	-	-	1	2	2	3	6	
P4 = 0	9	9	9	7	4*	3*	1*	-	-			CBI			_	-	1	-	-	1	3	5	5	7	9	
HC = 10	0	9+	9+	9	7	1	-	-	-	-			070	1-5	_	1	5	2	2	4	8	8	9	9	9+	
PY1 = 11	1	8	8	8	8	7	5	1	-	-	11	ale	υ <u>π</u>	12	3	6	7	6	5	6	8	8	9	9	9	
CR = 12	2	9	9	9	9	9	6	2	1	-	<u> </u>	-	_	-	- 1		7	ă	7	8	8	7	8	9	9	
LU = 13	3	8	9	9	9	8	4	ī	-	1	_	-	1	_	3	6	7	7	5	7	7	7	8	9	8	
G = 14	4	-	-	-	-	-	1*	5*	2*	1*	-	-	-	-	-	-	-	3*	4*	4*	2*	2*	1*	1*	1	
T = 1	5	1	-	-	-	-	4*	5*	2*	-	S	ho	rt- v	We		-		4 *	4 *	4 *	3*	1*	1*	5	3	
UA3 = 16	6	ī	1	2	4*	5*	5*	2*	1*	-			· • 2					6*	5*	4 *	2*	1	ī		-	
UN = 17	7	1	4	2	7	6	4	1	X	-	10	mo	mot	h-l	TTT	1*	5*	5*	1*	3	1	-	-			
TA9 = 18	Â	1*	1*	1*	4*	2*	2	ĩ				лıg	pa		ĽŲ	1.	4*	4*	3*	1*	-	-	-	-	-	
UA0 = 19	ě.	2	2	2	2*	ĩ	6	ĩ	2	1	_	-	• _	_	D -	2 *	5*	4 *	1*	-	1	4	1	6	6	
4X = 20	0	ĩ	1	ĩ	3	5*	6*	5*	1*	-	0	pei	nn	2S.	Ве	-	ĩ	4 *	4 *	5*	3*	1*	1*	š	ž	
HZ - 21	ĩ	1	1	2	6*	7*	5*	3*	1*	-		۰.	_ `		-	_	3*	7*	7*	4*	2*	1*	5	2	ĩ	
VII - 22	2	ĩ	2*	5*	5*	5*	2	-	-	_	l tł	ier	e_0	pr]h)e.	1.	4 *	6*	4 *	2	1	-	-	-	-	
JTT = 23	ā	1*	2*	1	3*	2*	4	2	1	_			•••••	-		1.	5*	4*	2*	1*	-	_	_	1	2	
VP2 - 24	4	4 +	2	Ē	7	7	7	6	4	2	h	nce	d	_	_	2.	4+	4 *	4	1	_	_	6	4	2	
TA1 = 21	-	4	2*	1	É	1	É	4	1	1		USU	us		1+	2.4	E+	2*	1+	1+		-	5	6	5	
HG - 24	6	-	4 *	4 *	3	3	2	1	-	-			-	-	1	2 *	5.*	2*	1	1	-	-	-	2	4	
DII - 27	~	- 5*	5	6	-	6	Ê	Ē	4	2	1		-		_	1+	4+	2	Ē	3	-	-	2	Ê	5	
VB - 28	á	2	ē*	5	ś	5	š	5	4	2	1		-		_	-	-	1	6	2	-	_	-		a a	
VK6 - 20	6	ŝ	5	6	3	5	7	7	6	6	Ē	2	1		_	_	3	4	5	Ē	-	_	_	1	6	
VK3 - 30	ő	6	ě.	ě	é	ě	6	<u></u>	ě	-	-	-	-	_	_	_	3	2	-	-	_	1	7	Ē	6	
KH6 - 31	ĭ	2	4	7	ě	~	2	- e	ä	9		6	2	1	_	1	6	ā	9.4	9.4	9	ā	9.	ě.	1	
VU0 - 22	2	ā	-	6	~	~	~	~	~	2	- E	2	2	1	_	-		~	-	~	2	~	-	~		
CN - 22	2	•		•		•		2.	°	1.	5	2	3	-	-	-	-			3.*	2.	2.	°.	•	2	
CN = 33	2	2	-	-	-	-	-		1.	1-	-	-	-	-	-	-	-	4-	4.	5-	2.	2	1.	ē	4	
50 = 34 6W - 31	4 F	4	-	÷	4	2	• *	5*	1.	1.	1.	-	-	-	-	-	1	-		5.	24	2.	1~	6	1	
DO - 34	2	ĉ	2	1	•	4	-	- -		1.	1-	-	-	-	-	1	1		1	1	1	2-	1	2	é	
DZ = 30	-	2	1	1	-	Ā	- •+	0×	3*	1*	-	-	-	-	-	1	1	3*	1	1	1	-	1	1	1	
54 = 31 766 - 36	,	5	T	-	-	4	64	5×	44	-	1.4	-	-	-	-	-	14	2*	-	-	-	-	-	T	T	
AB0 = 30	6	-	-	-	Ē	- 	0×	0× 7+	1.4	2*	т×	-	1.4	-	-	-	т.*	-	T	1	-	-	Ē	Ē	-	
FR = 33	~	-	-	-	5	1.0	0*	1.	1.4	-	-	-	т.	-	-	-	-	-	1.0	1.0	-	-	5	5	4	
FJL = 40	۰ ,	-		-	-	×1	2*	1*	<u>т*</u>	-	-	10		10	1.2	1.4	3*	14	17*	10	10				-	
Toue		mc -	01	02	03	04	05			08	-+1-	10	TT	12	13	14	15	10	17	19	19	20	21	44	25	
		1111	>						= 1.6	manni	a E D															

Expected signal levels using 1500 W and 14 dBi isotropic antennas.

A detailed look at 15 meters, looking for rate opportunities.⁸⁴

May, CA (San Francisco), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

			80	Me	ter	s				40	Met	ter	5				20	Me	ter	s				15	Me	ters	3				10	Met	ers	3		
UTC	EU	FE	SA	AF	$\mathtt{A}S$	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	UTC
0	-	-	-	-	-	-	9+	1	-	7	2	-	-	9+	7	8	9	9	8	9	9+	1	4*	<mark>9+</mark>	8	1	8	9+	-	2*	8	-	1*	8	6	0
1	-	-	3	-	-	-	9+	4	-	8	5	-	2	9+	7	9	9+	9	8	9+	9+	1	<mark>6*</mark>	9+	7	4	9	9+	-	4*	7	-	2*	8	6	1
2	-	-	7	2	-	-	9+	5	-	8	6	-	6	9+	8	8	9+	9	8	9+	9+	2	5	9	5	<mark>5*</mark>	9	9+	-	3*	3	-	3*	9	8	2
3	2	-	8	5	-	4	9+	3	-	8	8	-	8	9+	8	8	9+	9	8	9+	9+	<mark>4*</mark>	7	9	6	7	9	9+	-	1*	-	-	4*	8	6	3
4	1	-	9	6	-	8	9+	7	1	9	8	-	9	9+	8	8	9+	9	8	9+	9+	<mark>5*</mark>	7	9	6*	<mark>7*</mark>	9	9	1*	1	-	1*	5*	7	6	4
5	2	-	8	7	-	9	9+	8	2	9	8	-	9	9+	8	9	9+	9	8	9+	9+	<mark>5*</mark>	7	6	8*	5*	9	8	1*	-	-	2*	1*	8	6	5
6	2	-	8	6	-	8	9+	6	3	9	8	-	9+	9+	8	9	9+	7	8	9+	9+	<mark>5*</mark>	6	2	8*	3*	9+	8	-	-	-	1*	-	6	7	6
7	-	-	8	2	-	9	9+	6	5	9	8	-	9+	9+	7	9	9	5	8	9+	9+	2*	4	1	4*	1*	9	8	-	-	-	-	-	-	7	7
8	-	1	8	1	-	9	9+	3	8	9	6	1	9+	9+	5	9	9	2*	8	9	9+	1*	3	1	2*	-	9	8	-	-	-	-	-	-	7	8
9	-	6	8	-	-	9+	9+	2	8	9	2	2	9+	9+	2	9	8	3*	8	9	9+	-	1	-	1*	-	8	8	-	-	-	-	-	-	7	9
10	-	8	8	-	-	9+	9+	1	9	9	1	4	9+	9+	-	9	8	5*	5	9	9	-	-	-	-	-	6	8	-	-	-	-	-	-	7	10
11	-	8	7	-	-	9+	9+	1	9	9	-	5	9+	9+	-	8	9	6*	2*	9	9	-	-	1	1*	-	3	8	-	-	-	-	-	-	7	11
12	-	8	5	-	2	9+	9+	-	9	8	-	5	9+	9+	2	5	8	6*	1*	9+	9	-	-	-	-	-	1	8	-	-	-	-	-	-	7	12
13	-	8	1	-	1	9	9+	-	9	6	-	8	9+	9+	6	5	9	6	3	9+	9+	-	1*	3	-	-	-	8	-	-	-	-	-	-	7	13
14	-	6	-	-	-	9	9+	-	8	3	1*	5	9	9	7	8	9	8	8	9+	9+	-	2*	6	3	1*	1*	8	-	-	-	-	-	-	7	14
15	-	2	-	-	-	6	9+	-	7	-	-	4	9	9+	8	9	8	8	8	9	9+	1*	<mark>5*</mark>	7	4	5*	6	9	-	-	-	-	-	-	6	15
16	-	-	-	-	-	2	9+	-	6	-	-	2	8	9+	8	9	9	8	8	9+	9+	6*	<mark>4</mark> *	8	5*	<mark>7*</mark>	9	9	-	-	-	-	-	-	6	16
17	-	-	-	-	-	-	9+	-	3	-	-	1	6	9+	8	9	8	8	8	9+	9+	<mark>5*</mark>	6	7	4*	<mark>7*</mark>	9+	8	-	-	-	-	1*	-	6	17
18	-	-	-	-	-	-	9+	-	1	-	-	-	2	9+	8	8	7	8	7	9	9+	4*	2	8	5*	4*	9+	9	2*	-	-	-	-	1	6	18
19	-	-	-	-	-	-	9+	-	-	-	-	-	1	9+	7	8	7	7	6	9	9+	3*	1	8	3*	2*	9	9	1*	-	1	-	-	-	6	19
20	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	7	8	7	7	6	9	9+	2*	5	8	2*	1*	9	9+	-	-	5	1*	-	-	6	20
21	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	8	9	8	8	6	9	9+	1*	6	9	5	5	9+	9+	-	-	7	1*	-	1	6	21
22	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	8	8	9	8	7	8	9+	5	6	9	6	2	9+	9+	-	-	8	-	-	5	6	22
23	-	-	-	-	-	-	9+	-	-	2	1	-	-	9+	8	8	9	8	7	9	9+	3	6	9+	7	2	8	9+	-	1*	8	-	-	8	6	23
	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	

Next, 20 meters, looking for rate again.

Contest Band-Planning Details

Single-Operator, All-Band, SO2R, WPX CW

20 mete	1.5.1	, in the second	,, <u> </u>	~	Dan		and	1500	· · ·	or .	1.01		20 11	, 51	851	n o	-01	no.	(0)	201	0.0	can	50	a,
	OTC	>				0.5		A B									3.6		10	1.0	~ ~	~ 7	~~	
20ne	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	10	17	18	19	20	21	22	23
KL7 = 01	9+	9+	9+	9+	9+	9+	9+	9+	9+	9	8	3	3	6	9	9+	9+	9+	9+	9+	9+	9	9	9+
VO2 = 02	9	9	9	9	5	1	-	-	1*	2*	1*	1*	-	2	9	6	7	5	6	7	8	8	9	9
$N_{6} = 03$	6	6	6	6	6	7	8	8	8	8	8	8	8	7	7	7	7	6	6	6	6	6	6	6
W79 = 04	9+	9+	9+	9+	9+	9+	9	7	5	1	1*	2*	4	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+
13 = 05	9+	9+	9+	8	6	9+	9	8	6	4	3	7	9	5	7	7	7	9	9	9	9	8	7	9
KE1 = 06	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9	9	9	9+	9+	9+	5	7	8	8	8	9	9	9
CI = 07	9	9+	9+	9+	9+	8	6	4	2	1	2	1	4	9	9	3	9	8	7	7	7	8	9	9
IP2 = 08	9	9+	9+	9+	9	6	2	1	1*	2*	2*	1*	5	9	8	7	2	3	4	4	5	7	8	8
24 = 09	9	9+	9+	9+	9+	8	6	3	1	1*	2*	1	6	9	9	7	5	4	4	4	5	7	8	8
IC = 10	9	9+	9+	9+	9+	9	9	8	7	6	6	5	6	9	9	8	6	5	4	3	4	6	8	8
PY1 = 11	8	8	8	9	9	9	9	8	7	7	8	7	8	6	2	1	1	-	-	1	1	2	4	6
E = 12	8	9	9	9	9	9+	9+	9	9	8	2	6	8	8	8	6	5	2	2	1	1	2	5	7
U = 13	8	9	9	9	9	9	9	9	9	5	3	9	8	8	5	3	1	1	-	-	1	1	4	6
; = 14	7	6	5	5	5	5	5	5	2	1	-	-	1	6	7	7	8	7	7	7	7	8	8	8
= 15	7	7	6	6	7	8	8	7	4	1	-	-	2	6	6	7	7	8	8	7	7	7	8	8
JA3 = 16	7	7	8	8	8	8	8	7	5	2	-	-	1	4	7	8	8	8	7	7	7	7	7	7
JN = 17	7	8	8	7	5	6	6	6	6	5	2	1*	1*	3	7	8	8	8	7	6	5	5	5	6
A9 = 18	7	8	8	8	8	8	8	7	7	5	2	_	1*	1	6	7	8	7	6	5	5	5	6	6
A0 = 19	8	8	8	8	8	9	9	9	9	9	8	5	4	5	8	8	7	8	8	8	8	7	8	8
X = 20	7	7	7	8	8	7	5	3	1	_	_	_	1	4	5	7	6	7	6	6	6	6	7	7
Z = 21	6	7	7	6	7	5	5	4	1	-	-	-	1*	2*	5	6	7	6	6	6	5	6	6	6
U = 22	6	6	5	4	4	4	3	2	3	2	1	2*	1*	2*	8	8	8	7	6	6	5	4	4	6
T = 23	Å	ŝ	7	8	8	7	8	8	8	8	5	1*	1*	1	6	8	8	7	7	6	6	6	7	7
$R_2 = 24$	7	6	5	5	5	5	6	8	8	9	8	6	4	5	8	9	9	9	8	8	8	7	8	8
12 - 24 11 - 25	á	ž	6	ě	ă	ő	å	ă	ě	á	ě	š	1	ĩ	Ĕ	6	Å	5	7	ă	ĕ	6	ě	ă
a - 26	Ĕ	6	5	~	1	1	2	4	~	2	č	1	1	2	6	ă	9	ã	2	~	č	2	č	č
U = 27	-	E	2	3	4	Ê	ĉ		å	á	å	-	ć	2	ő	š	õ	ä	6	á	7	6	5	Ē
B - 2/	3	2	1	1	1	1	2	6	0	9	9	0	Ē	É	0	9	9	9	7	6	<i>'</i>		4	2
- 29	1+	2+	1+	1	1	2	5	2	å	å	9	å	9	8	é	å	å	7	ć	à	-	1	-	-
$K_3 = 30$	1*	1	2	î	4	7	9	<u> </u>	9	9	9	9	9	8	8	8	8	6	-	5	4	î	1	1*
H6 = 31	9	<u>.</u>	<u>.</u>	9.	9.4		9.0	6.	4	8	6	3	9.	<u>.</u>	9.4	5	<u>.</u> .	å.	9	ă		â	â	9
UP - 22	2	~	~	~	~		1	1	~	~	å	ä	~	~	~	6		~	~	~	7	-	~	2
Uno = 32 NI _ 23	8	0	2	-	2	2+	7	4	2.	2	2	-		-	2	ĉ		•	0	2	2	á	õ	0 0
M = 33	7	ő	2		5	2	6	-	1	-	-	1	1	Ê	6	2		ĉ	ĉ	ć	ć	ĉ	~	2
W 35	6	~		~	~	~	2	5	1	-	-	-	-	5	5	é	ŝ	2	ĉ	Ê	2	8		6
m = 35	2	7	2	7	3	7	6	5	2.5	2*	1.4	т	5	4	2	5	3.5	2.4	1	1	1	0	8	8
2 = 36	8	8	8	2	-	5	6	4	1.4	Τ.*	-	1.6	-	*	2*	5	4*	3*	1	1	1	4	4	5
2 = 37	6	8	6	7		6	6	2	1*	-	-	1*	2*	3	7	8	6*	2*	1	1	3	4	4	6
100 = 38 10 - 30	3	4	2	-	2*	2	5	2	2*	1*	2*	2*	4*	4*	ð Ræ	ě	2*	-	-	1	1	1	1	2
TK = 39	ь	-	4	7	8*		5*	4*	- 2*	3*	5*		6*	•*	7*		ê	3	2	2	1	2	2	5
5L = 40	8	8	8	7	7	7	8	6	4	1	1*	1*	1*	1	5	8	7	6	5	5	5	6	7	8
one	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23

 $\pi = \text{Longpath}$ Expected signal levels using 1500 W and 12 dBi isotropic antennas.

Note how 20 often comes back after

around local

fading

noon

Highlight where predicted signal strength > S8 = can CQ.

Horse Races!

• It's useful to compare signals from all over the world into a receiver in a desired target location.

Horse Races!

• It's useful to compare signals from all over the world into a receiver in a desired target location.

• Let's look at Southern Europe (Rome) and Eastern Europe (Moscow) for the WPX CW contest in May, at a Low level of solar activity, using the Detailed predictions.

Horse Races!

• It's useful to compare signals from all over the world into a receiver in a desired target location.

• Let's look at Southern Europe (Rome) and Eastern Europe (Moscow) for the WPX CW contest in May, at a Low level of solar activity, using the Detailed predictions.

• For a W6, the "competition" is from the USA, from Europe and from Japan.

Single-Operator, All-Band, SO2R, WPX CW

20 Meters: May, Italy (Rome), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

_								-																
Zone	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
KL7 = 01	5	4	1	2*	4	6	8	7	6	7	6	6	6	6	6	6	6	8	8	8	8	9	8	7
V02 = 02	7	4	1*	2*	1*	-	-	-	3	9	9	6	8	8	8	8	9	9	9	9	9	9	و	9
W6 = 03	7	6	3	2*	4	6	8	6	4	1	1	1	4	6	6	7	7	8	7	7	7	7	8	8
W9 = 04	9	8	5	3	5	4	2	-	2	5	7	7	7	8	8	8	8	7	7	7	8	8	8	8
W3 = 05	9	8	5	2	5	1	1*	-	1	6	8	6	6	7	7	7	7	7	7	7	8	9	. 8	9
XE1 = 06	9	8	6	4	5	7	5	2	1	1	3	6	5	5	6	4	4	3	3	4	5	6	8	9
TI = 07	9	9	8	6	6	8	9	8	8	7	8	6	5	5	6	5	4	2	4	5	7	8	9	9
VP2 = 08	9	9	9	8	8	8	9	8	8	8	8	8	7	5	6	5	5	6	8	9	9	9	9	9
P4 = 09	9	9	7	5	5	7	9	8	7	8	7	8	7	6	6	5	5	5	6	8	9	9	9	9
HC = 10	9	9	9	8	8	9	9	9	8	7	7	5	4	2	1	1	2	2	4	5	7	9	9	9
PY1 = 11	9	9	9	9	8	9	5	3	7	7	6	5	1	1	-	1	3	5	8	9	9	9	9	9
CE = 12	9	9	9	9	9	8	8	5	-	-	3	1	-	-	-	1*	-	1	3	6	8	8	8	9
LU = 13	9	9	9	9	9	9	8	4	-	-	1	1	-	-	-	-	-	2	5	7	8	9	9	9
G = 14	5	3	3	6	8	9	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9	8
I = 15	7	7	7	7	7	6	6	6	5	5	5	5	5	5	5	5	5	6	6	6	6	6	6	6
UA3 = 16	9	5	5	8	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9
UN = 17	3	1*	3	9	9	9	7	7	8	5	8	8	8	9	9	9	9+	9+	9+	9+	9+	8	5	1
UA9 = 18	2	1*	1	6	9	9	9	7	6	8	8	8	8	9	9	9	9	9	9	9	8	6	5	2
UA0 = 19	5	2	3	6	7	6	6	6	6	6	6	6	7	7	8	8	8	8	8	8	8	8	8	6
4X = 20	9+	9+	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+
HZ = 21	4	2*	1	5	9+	9+	9	9	9	8	8	8	9	9	9	9	9+	9+	9+	9+	9+	9+	9	7
VU = 22	8	6	8	9	9	8	6	5	5	5	5	6	7	8	8	9	9+	9+	9+	9+	9+	9	9	9
JT = 23	5	2	5	8	9	6	6	6	5	5	5	6	5	7	7	9	8	8	9	9	8	6	7	6
VR2 = 24	8	6	6	5	5	3	2	2	4	6	4	5	6	7	8	8	9	9	9	9	9	9	9	8
JA1 = 25	5	4	5	6	6	5	6	5	6	5	5	7	7	8	7	8	9		8	9	9	9	8	7
HS = 26	8	8	7	7	5	3	1	2	2	2	3	4	2	6	7	8	8	9	9	9	9	9	8	8
DU = 27	7	6	6	5	2	1	1	1	ĩ	2	3	4	5	7	7	9	9	9	9	9	9	9	9	8
YB = 28	é	š	š	5	2	1	1	-	-	ĩ	1	1	4	5	5	8	8	9	9	9	9	9	5	7
VK6 = 29	9	ă	7	5	2	-	1*	1*	1*	1*	1	2	3	5	4	2	4	6	8	8	8	3	4	7
VK3 = 30	8	5	3	2	2*	4*	8	5*	2*	1*	1	1	1	1	2	4	6	8	8	8	4	6	8	8
KH6 = 31	2	2	1	3*	4*	6	7	8	8	6	6	6	5	5	5	6	7	ě	5	4	4	4	3	2
KH8 - 32	1*	2*	4*	5*	5	6	6	5	3	2	2	2	2	3	4	6	2	5	7	5*	Ē	3*	1	1*
CN - 33	9.	6	9	9	ã	ě.	ě.		ě.	<u>_</u>	<u>.</u>	- -	<u>.</u>			ĕ.	<u>.</u>	õ.	é.	9.	ě.	9.	<u>.</u>	9.
SU = 34	94	é.	á	á		94	94	94	94	94	9+	94	94	94	94	94	9.	94	94	94	94	94	94	9.
6W - 35	6	6	5	á	5	6	8	91	8	9	9	8	8	7	8	8	٩ ٩	9	91	94	94	94	8	6
D2 = 36	ě	š	5	-		ě	ĕ	8	7	5	á	ž	4	ś	7	ĕ	á	6	91	91	94	9	š	ě.
57 = 37	ő.	ő	4	6	9	6	á	7	2	4	4	4	5	7	ŝ	š	ő	9.4	94	94	94	ő.	ő.	9.
786 - 38	8	é	4	ž	5	á	8	6	á	2	1	-	-	-	ă	7	á	<u>.</u>	<u>.</u>		<u>.</u>	<u>.</u>	8	8
FR = 39	ĕ	ă	2	8	ă	á	6	2	3	1	ĩ	1	3	2	6	á	õ	á	é	6	á	á	š	ă
ETL - 40	2+	2+	2*	1*	1*	ĩ	5	6	7	8	8	ŝ	8		ă	9	á	9	6	9	7	6	Ă	2+
Zone	00	01	02	03	04	05	06	07	0.8	<u>0</u>	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Tone	UTC	>	04	0.5	11	05	•••	T.	onge	ath	10	11	10	13	11	15	10	1,	10	19	20		44	23
	010	>							ongp	aun														

Expected signal levels using 1500 W and 12 dBi isotropic antennas.

Checking competition for W6 on 20 meters in Southern Europe.

90

EU

JA

• For example, from 05 to 08 UTC, W6 has stronger signals into Southern Europe on 20 meters compared to the rest of the USA.

• For example, from 05 to 08 UTC, W6 has stronger signals into Southern Europe on 20 meters compared to the rest of the USA.

• However, the signals into the Italian's receiver from Europe during that time will be stronger than the W6, for antennas pointed at Rome.

• For example, from 05 to 08 UTC, W6 has stronger signals into Southern Europe on 20 meters compared to the rest of the USA.

• However, the signals into the Italian's receiver from Europe during that time will be stronger than the W6, for antennas pointed at Rome.

• The actual antenna patterns of both transmitting and receiving stations are important.

Area Covered From Southern Europe

SDBW

areadata

areadata\default\temp.V11

Isotropic TX & RX antennas — the antennas used in predictions. Rome's signal is S8 in San Francisco

Europe: Blow-Up

Close-up of signals around Rome. This map has the receive antennas all aimed at Rome.

Azimuths for Competition in Rome

Good F/B needed from Western Europe, and good F/R needed to/from Eastern Europe to work W6s from Rome.

Typical 3L20 Azimuth Response

320-16H.YW 14.175 MHz

97

Interference from Western Europe (London) depends on F/B of London Yagi towards South Europe (Rome).

Signals in Rome: 3L20 Yagis at 75'

3LYagi at 75' on 20 meters from Rome. European receiving antennas are also 3LYagis at 75' — aimed at W6, not at Rome.

Now, Eastern Europe

Single-Operator, All-Band, SO2R, WPX CW

20 Meters: May, Eu. Russia (Moscow), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

		010																							
Zone		00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
KL7 =	01	5	5	7	8	8	8	7	7	6	7	8	8	8	7	7	7	7	6	5	5	7	7	6	6
V02 =	02	3	1*	1+	1+	1+				2	8	8	8	8	7		9	9	9	9	8	8	8	8	5
W6 =	03	5	5	7	7	8	8	8	7	5	3	2	2	4	5	7	7	8	8	7	6	6	6	6	7
W9 =	04	8	7	7	7	6	6	5	4	5	5	4	7	6	7	7	7	7	6	6	6	6	8	8	8
W3 =	05	7	6	5	6	7	3	1	1	2	5	6	6	7	8	7	7	6	5	7	7	8	7	7	8
XE1 =	06	6	5	5	6	7	8	6	2	1	-	1	4	6	7	9	5	2	2	2	2	3	5	5	6
TI =	07	7	5	5	5	7	8	7	5	5	5	6	5	6	6	5	4	2	1	2	2	4	6	7	7
VP2 =	08	7	5	2	3	5	7	5	3	5	8	6	8	8	7	5	6	5	5	6	7	8	8	8	8
P4 =	09	8	6	4	5	6	8	8	6	5	7	6	8	8	7	5	6	2	3	5	6	7	8	9	8
HC =	10	8	6	5	6	7	8	8	8	8	7	6	4	6	5	2	3	1	1	2	2	4	8	8	8
PY1 =	11	9	8	8	8	9	7	1	-	3	2	2	1	-	-	-	1	2	4	8	8	9	9	9	9
CE =	12	8	7	5	5	8	8	8	5	-	-	2	-	1*	2*	1*	1*	-	-	2	4	6	7	8	8
LU =	13	8	7	5	6	8	9	7	1	-	1	1	1	1*	1*	1*	-	1	2	4	6	8	9	9	9
G =	14	9	5	4	6	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9
I =	15	9	5	5	8	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9
UA3 =	16	8	8	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	8	8
UN =	17	9	9+	9+	9+	9+	8	8	8	8	8	7	5	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9	9
UA9 =	18	9+	9+	9+	9+	9+	6	7	8	8	8	6	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9	9
UA0 =	19	6	8	9	9	9	8	8	8	9	9	8	8	9	9	9	9	9	9	8	7	7	5	5	5
4X =	20	9	9	9+	9+	9+	9+	9+	7	6	6	7	6	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+
HZ =	21	9+	9+	9+	6	9+	9+	9	9	9	9	9	9	9	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+
VU =	22	1*	4	9	9	9	9	8	8	8	8	9	9	9	9	9+	9+	9+	9+	9+	9+	8	4	1	-
JT =	23	2	5	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	7	4	1*	2	1*
VR2 =	24	8	9	6	5	4	2	2	2	3	3	5	5	7	8	9	8	8	8	9+	9	8	7	7	7
JA1 =	25	8	8	7	6	8	6	7	6	7	7	8	8	8	9	8	9	9	9	9	9	8	8	8	8
HS =	26	9	9	7	7	5	2	3	2	4	2	4	5	8	8	9	9	8	9	9	9+	9	8	7	7
DU =	27	7	7	6	5	3	3	3	4	5	6	7	8	8	9	9	9	9	9	9	9	9	8	7	6
YB =	28	8	8	8	6	1	1	1	1	1	1	5	6	7	8	9	9	8	9	9	9	9	7	3	8
VK6 =	29	7	7	6	4	-	-	-	1*	1	1	3	4	6	7	7	7	8	8	8	9	8	3	1	8
VK3 =	30	5	4	1	-	1*	2*	2*	2*	1*	1	2	4	6	7	8	8	8	8	9	9	8	8	6	6
KH6 =	31	3	4	5	6	6	7	7	7	7	7	8	8	7	7	7	7	8	8	7	6	5	4	3	3
KH8 =	32	-	1*	2*	5	8	8	6	4	4	5	5	8	8	7	8	8	4	5	8	7	6	3	1	-
CN =	33	1	1*	2*	1*	1	5	9	9	9	9	9	9	9	9	9	9	9	9+	9+	9+	9+	9+	8	5
SU =	34	9+	9	9+	9+	9+	9+	9+	8	8	8	8	8	7	7	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+
6W =	35	8	5	3	4	7	8	9	8	7	4	5	4	3	4	4	8	8	9	9	9+	9+	9+	9+	9
D2 =	36	9	8	6	1	2	8	6	4	2	2	-	-	2	4	6	8	8	9	9	9	9	9	9	9
5Z =	37	9	9	5	9	9	8	5	5	4	2	2	3	5	7	8	9	9+	9+	9+	9+	9+	9+	9+	9+
ZS6 =	38	8	7	1	-	2	8	5	3	1	1	-	-	1	2	5	8	8	9	9	9	9	8	7	6
FR =	39	8	3	5	9	8	7	3	1	1	1	1	1	6	6	8	9	9	9	9	9+	9	9	9	9
FJL =	40	8	8	9	9	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9	9	9
Zone		00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
		UTC	>					*	= L	ongp	ath														
_	-			-																					

Expected signal levels using 1500 W and 12 dBi isotropic antennas.

US competition on 20 into Eastern Europe is less severe for W6. ⁹⁹

USA

EU

JA

Azimuths for Competition in Moscow

Good F/R needed to/from Western and Southern Europe to work W6s from Eastern Europe (Moscow). 100

Typical 5L20 Azimuthal Response

Azimuthal response of a 5L/5L/5L vertical stack will be the same in Moscow.

Eastern Europe: With N6RO Stacks

20-meter 5L/5L/5L transmitting stack from Moscow to W6. European receiving antennas are the same stacks, aimed at W6. Besides azimuthal nulls, stacks suppress high elevation angles. 102

• So, it turns out that the interfering signals from within Europe aren't as frightening as first thought.

- So, it turns out that the interfering signals from within Europe aren't as frightening as first thought.
- This is true, providing that directional antennas are used in Europe, and providing that they're all pointing towards the USA!

- So, it turns out that the interfering signals from within Europe aren't as frightening as first thought.
- This is true, providing that directional antennas are used in Europe, and providing that they're all pointing towards the USA!
- Stacks can help extend the Skip Zone a little.

- So, it turns out that the interfering signals from within Europe aren't as frightening as first thought.
- This is true, providing that directional antennas are used in Europe, and providing that they're all pointing towards the USA!
- Stacks can help extend the Skip Zone a little.
- European stations using omnidirectional verticals can still make it hard for other Europeans to hear DX.

- So, it turns out that the interfering signals from within Europe aren't as frightening as first thought.
- This is true, providing that directional antennas are used in Europe, and providing that they're all pointing towards the USA!
- Stacks can help extend the Skip Zone a little.
- European stations using omnidirectional verticals can still make it hard for other Europeans to hear DX.

• Things get a lot more challenging on the lower bands below 20 meters, where highly directional antennas are less likely to be found, and where skip zones naturally decrease in size.

Contest Band-Planning Strategies

Single-Operator, All-Band, SO2R, WPX CW

May, CA (San Francisco), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

			80	Me	ter	s				40	Met	ter	5				20	Me	ter	s				15	Met	ter	3				10	Met	era	3		
UTC	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	UTC
0	-	-	-	-	-	-	9+	1	-	7	2	-	-	9+	7	8	9	9	8	9	9+	1	4*	9+	8	1	8	9+	-	2*	8	-	1*	8	6	0
1	-	-	3	-	-	-	9+	4	-	8	5	-	2	9+	7	9	9+	9	8	9+	9+	1	6*	9+	7	4	9	9+	-	4*	7	-	2*	8	6	1
2	-	-	7	2	-	-	9+	5	-	8	6	-	6	9+	8	8	9+	9	8	9+	9+	2	5	9	5	5*	9	9+	-	3*	3	-	3*	9	8	2
3	2	-	8	5	-	4	9+	3	-	8	8	-	8	9+	8	8	9+	9	8	9+	9+	4*	7	9	6	7	9	9+	-	1*	-	-	4*	8	6	3
4	1	-	9	6	-	8	9+	7	1	9	8	-	9	9+	8	8	9+	9	8	9+	9+	5*	7	9	6*	7*	9	9	1*	1	-	1*	5*	7	6	4
5	2	-	8	7	-	9	9+	8	2	9	8	-	9	9+	8	9	9+	9	8	9+	9+	5*	7	6	8*	5*	9	8	1*	_	-	2*	1*	8	6	5
6	2	-	8	6	-	8	9+	6	3	9	8	-	9+	9+	8	9	9+	7	8	9+	9+	5*	6	2	8*	3*	9+	8	-	-	-	1*	-	6	7	6
7	-	-	8	2	_	9	9+	6	5	9	8	-	9+	9+	7	9	9	5	8	9+	9+	2*	4	1	4*	1*	9	8	-	_	_	-	_	_	7	7
8	-	1	8	1	-	9	9+	3	8	9	6	1	9+	9+	5	9	9	2*	8	9	9+	1*	3	1	2*	-	9	8	-	-	-	-	-	-	7	8
9	_	6	8	_	-	9+	9+	2	8	9	2	2	9+	9+	2	9	8	3*	8	9	9+	_	1	-	1*	_	8	8	-	_	_	_	_	_	7	9
10	_	8	8	_	_	9+	9+	1	9	9	1	4	9+	9+	_	9	8	5*	5	9	9	_	_	-	_	_	6	8	_	_	_	_	_	_	7	10
11	_	8	7	_	_	9+	9+	1	9	9	_	5	9+	9+	_	8	9	6*	2*	9	9	_	_	1	1*	_	3	8	_	_	_	_	_	_	7	11
12	-	8	5	-	2	9+	9+	-	9	8	-	5	9+	9+	2	5	8	6*	1*	9+	9		-	-	-	-	1	8	-	-	-	-	-	-	7	12
13	_	8	1	_	1	9	9+	-	9	6	_	8	9+	9+	6	5	9	6	3	9+	9+	_	1*	3	_	_	_	8	_	_	_	_	_	_	7	13
14	_	6	_	_	_	9	9+	_	8	3	1*	5	9	9	7	8	9	8	8	9+	9+	_	2*	6	3	1*	1*	8	_	_	_	_	_	_	7	14
15	_	2	_	_	_	6	9+	_	7	_	_	4	9	9+	8	9	8	8	8	9	9+	1*	5*	7	4	5*	6	9	_	_	_	_	_	_	6	15
16	-	_	-	_	-	2	9+	-	6	-	_	2	8	9+	8	9	9	8	8	9+	9+	6*	4*	8	5*	7*	9	9	-	_	_	_	_	_	6	16
17	_	_	_	_	_	-	94	_	3	_	_	1	6	9+	8	0	8	8	8	9+	9+	5*	6	7	4 *	7*	<u>.</u>	8	_	_	_	_	1*	_	6	17
1.8	_	_	_	_	_	_	91	_	1	_	_	-	2	91	8	8	7	8	7		91	4*	2	8	5*	4*	<u>.</u>	<u> </u>	2*	_	_	_	-	1	6	18
19	_	_	_	_	_	_	91	_	-	_	_	_	1	91	7		7	7	6	-	<u>.</u>	3*	1		3*	2*	0	•	- 1*	_	1	_	_	-	6	19
20	_	_	_	_	_	_	91	_	_	_	_	_	-	91	7	8	7	7	6	0	91	2*	5	8	2*	1*	0	<u>01</u>	-	_	5	1*	_	_	6	20
21	_	_	-	_	-	-	0.	-	_	_	_	-	_	0.	, 0		<u>,</u>	<u>。</u>	6	~	01 01	1*	6		5	5	<u>.</u>	0.	-	_	-	1*	_	1	6	21
22	_	_	_	_	-	_	91	-	_	_	_	_	_	94	•	0	0	0	7	0	<u>.</u>	5	6	0	6	2	94 04	<u>.</u>	_	-	, 0	1	-	5	e e	22
22	_	-	_	-	-	-	<u>.</u>	-	-	2	1	-	-	<u>.</u>	•	0	0	0	, ,		<u>.</u>	2	6	-	7	2	0	0.	-	- 1*	•	_	-	•	6	22
43	-	-	-	-	-	-	9+	-	- 77	4	7		-	3+ NT	8 1917	• 	9	0 NF	20	9	3+ ND	3	0	9+ 07	/ 32	4	•	7+	-	Т.,	•	-	-	•	NA	43
	FO	РB	ъA	Ar	A.S	00	MA	E0	гE	ъA	AP	AS	00	TAN .	EO	P E	SA	AF	AS	00	NA	БU	PE	ъA	AP	AS	00	NA.	E0	ΓE	0A	AP	AD	00	nA	

Now, 40 and 80 meters, looking for double-point QSOs.

108
Contest Band-Planning Strategies Single-Operator, All-Band, SO2R, WPX CW

40 Meters: May, CA (San Francisco), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

		010	>																							
Zone		00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
KL7 =	01	6	7	9	9	9	9	9+	9+	9+	9+	9+	9+	9+	9+	9	9	8	8	6	4	3	2	3	4	
VO2 =	02	6	5	6	7	8	8	8	8	9	9	9	8	6	5	2	1	-	-	-	-	-	-	-	2	
W6 =	03	9+	9+	9+	9+	9+	9+	9+	9+	9	9	6	6	6	7	9	9+	9+	9+	9+	9+	9+	9+	9+	9+	
W9 =	04	8	9	9.4	9.4	9+	9+	9+	9+	9+	9+	9+	9+	9+	9+	9	8	5	3	1	1	1	2	4	6	
W3 -	05	Ř	8	8		4		-						8	8	7	4	2	-	-	-	-	-	2	ě	
XE1 -	0.6	8	8	9	9	9.4	9.	9.	9.4	9.4	9.4	9.4	9.	9.4	9	á	7	3	1	-	-	-	-	1	Ă	
TT -	07	é	ĕ	é	6	<u>.</u>	<u>.</u>	<u>.</u>	٥Ť	<u>.</u>	<u>.</u>	<u>.</u>	5	6	é	2		5	-	_	-	-	-	-	5	
VD2	~~~	5				~	~	~	~	~	~	~		5	2	3	-	-	-	-	-	-	-	-	2	
VP2 =	00	5	ŝ	2	ŝ	~	~	-	2	ŝ	ŝ	ŝ	2	2	-	-	-	-	-	-	-	-	-	-	-	
P4 =	09		ŝ			~	8	~	~	,	,	,	8	2	3	-	-	-	-	-	-	-	-	-	-	
HC =	10	4		8	8	8	8	8	8	9	9	9	8	7	4	1	-	-	-	-	-	-	-	-	1	
PY1 =	11	1	2	5	7	7	8	8	7	7	7	5	2	-	-	-	-	-	-	-	-	-	-	-	-	
CE =	12	-	2	6	8	7	8	9	9	9	9	8	7	5	1	-	-	-	-	-	-	-	-	-	-	
$r_{\Omega} =$	13	-	3	5	7	8	8	8	8	8	8	7	6	1	-	-	-	-	-	-	-	-	-	-	-	
G =	14	1	3	5	3	7	8	6	6	3	2	1	1	-	-	-	-	-	-	-	-	-	-	-	-	
I =	15	-	1	2	2	2	5	4	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
UA3 =	16	-	4	2	2	3	3	1	-	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	
UN =	17	-	-	-	-	-	-	-	-	-	-	-	-	1	3	2	1	1	-	-	-	-	-	-	-	
UA9 =	18	-	-	-	-	-	-	-	-	1	1	2	3	2	6	5	2	1	-	-	-	-	-	-	-	
UA0 =	19	-	-	-	-	1	2	3	4	6	8	9	9	9	8	8	7	5	з	1	-	-	-	-	-	
4X =	20	-	1	-	4	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
HZ =	21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
VU =	22	-	-	-	-	-	-	-	-	-	-	-	-	1	3	1	1	-	-	-	-	-	-	-	-	
JT -	23	-	-	-	-	-	-	-	-	1	2	4	5	5	8	Ē	Ā	2	1	-	-	-	-	-	-	
VP2 -	24	_	_	_	_	_	_	_	_	1	Ā	6	ŝ	ě	ě		6	4	1	_	_	_	_	_	_	
JA1 -	25	-	-	-	-	-	-	1	-		-						7	-	-	-	-	-	-	-	-	
UC =	45	-	-	-	-	-	-	-	5	•	•			-	2	2		1	3	-	-	-	-	-	-	
HS =	20	-	-	-	-	-	-	-	-	-	-	4	-	~	5	5	3	÷	-	-	-	-	-	-	-	
D0 =	27	-	-	-	-	-	-	-	-	2	5		8	8	8	8	6	5	T	-	-	-	-	-	-	
IB =	28	-	-	-	-	-	-	-	-	-	1	5	7	7	7	6	5	1	-	-	-	-	-	-	-	
VK6 =	29	-	-	-	-	-	-	-	-	1	5	5	6	7	5	6	3	1	-	-	-	-	-	-	-	
VK3 =	30	-	-	-	-	-	-	1	6	7	8	9	8	7	7	7	5	2	-	-	-	-	-	-	-	
КН6 =	31	-	2	6	8	9	9	9+	9+	9+	9+	9+	9+	9+	9+	9	9	8	6	2	1	-	-	-	-	
КН8 =	32	-	-	-	2	5	7	8	9	9	9	9	9	9	9	8	6	3	-	-	-	-	-	-	-	
CN =	33	1	4	6	7	5	6	8	6	5	1	1	-	-	-	-	-	-	-	-	-	-	-	-	1	
SU =	34	-	1	1	5	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
6W =	35	2	5	6	8	8	8	8	8	6	2	1	-	-	-	-	-	-	-	-	-	-	-	-	1	
D2 =	36	-	1	4	5	5	4	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
5Z =	37	-	-	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
ZS6 =	38	-	1	1	5	5	5	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
FR =	39	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1*	-	-	-	-	-	-	-	-	-	
R.TL -	40	_	1	2	3	4	5	2	3	3	4	5	6	3	2	2	1	_	_	_	_	_	_	_	_	
Zone	40	00	01	02	0.2	~	05	<u>_</u>	07	<u> </u>	~ ~	10	11	12	12	1.4	16	16	17	10	10	20	21	22	22	
Tone		100	01	02	03	04	05	00	·,	00		10	11	12	12	14	12	10	1/	10	13	20	21	44	45	
_		OTC	>	_				*	= 14	ongpa	ach															

Expected signal levels using 1500 W and 6 dBi isotropic antennas.

Contest Band-Planning Strategies

Single-Operator, All-Band, SO2R, WPX CW

May, CA (San Francisco), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

				80	Me	ter	s				40	Me	ter	s				20	Me	ter	s				15	Met	ter	5				10	Met	era	3		
	UTC	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	UTC
	0	-	-	-	-	-	-	9+	1	-	7	2	-	-	9+	7	8	9	9	8	9	9+	1	4*	9+	8	1	8	9+	-	2*	8	-	1*	8	6	0
	1	-	-	3	-	-	-	9+	4	-	8	5	-	2	9+	7	9	9+	9	8	9+	9+	1	6*	9+	7	4	9	9+	-	4*	7	-	2*	8	6	1
	2	-	-	7	2	-	-	9+	5	-	8	6	-	6	9+	8	8	9+	9	8	9+	9+	2	5	9	5	5*	9	9+	-	3*	3	-	3*	9	8	2
	3	2	-	8	5	-	4	9+	3	-	8	8	-	8	9+	8	8	9+	9	8	9+	9+	4*	7	9	6	7	9	9+	-	1*	-	-	4*	8	6	3
	4	1	-	9	6	-	8	9+	7	1	9	8	-	9	9+	8	8	9+	9	8	9+	9+	5*	7	9	6*	7*	9	9	1*	1	-	1*	5*	7	6	4
	5	2	-	8	7	-	9	9+	8	2	9	8	-	9	9+	8	9	9+	9	8	9+	9+	5*	7	6	8*	5*	9	8	1*	-	-	2*	1*	8	6	5
	6	2	-	8	6	-	8	9+	6	3	9	8	-	9+	9+	8	9	9+	7	8	9+	9+	5*	6	2	8*	3*	9+	8	-	-	-	1*	-	6	7	6
	7	_	-	8	2	-	9	9+	6	5	9	8	-	9+	9+	7	9	9	5	8	9+	9+	2*	4	1	4*	1*	9	8	-	_	-	-	-	-	7	7
	8	-	1	8	1	-	9	9+	3	8	9	6	1	9+	9+	5	9	9	2*	8	9	9+	1*	3	1	2*	-	9	8	-	-	-	-	_	_	7	8
	9	-	6	8	-	_	9+	9+	2	8	9	2	2	9+	9+	2	9	8	3*	8	9	9+	-	1	-	1*	-	8	8	-	-	-	-	_	_	7	9
	10	-	8	8	-	_	9+	9+	1	9	9	1	4	9+	9+	-	9	8	5*	5	9	9	-	-	-	-	-	6	8	-	-	-	-	_	_	7	10
	11	-	8	7	-	_	9+	9+	1	9	9	_	5	9+	9+	_	8	9	6*	2*	9	9	-	-	1	1*	-	3	8	-	-	-	-	_	_	7	11
Γ	12	-	8	5	-	2	9+	9+	-	9	8	-	5	9+	9+ 7	120	5	8	6*	1.*	0 /7 4	<u>a</u> 0	-	-	-	-	-	1	8	-	-	-	-	-	-	7	12
	13	-	8	1	-	1	9	9+	-	9	6	-	8	9+	9+	6	ņ	<u>l</u> e	6	Ţ	_ +	9 +•	-	1*	3	_	-	_	8	-	-	-	-	-	-	7	13
	14	-	6	-	-	-	9	9+	-	8	3	1*	5	9	9	7	8	9	8	8	9+	9+	-	2*	6	3	1*	1*	8	-	-	-	-	-	-	7	14
	15	_	2	_	_	_	6	9+	-	7	_	_	4	9	9+	8	9	8	8	8	9	9+	1*	<mark>5*</mark>	7	4	5*	6	9	_	-	_	_	_	_	6	15
	16	-	-	-	-	-	2	9+	-	6	-	-	2	8	9+	8	9	9	8	8	9+	9+	6*	4*	8	5*	7*	9	9	-	-	-	-	_	_	6	16
	17	_	_	_	_	_	-	9+	-	3	_	_	1	6	9+	8	9	8	8	8	9+	9+	5*	6	7	4*	7*	9+	8	_	_	_	_	1*	_	6	17
	18	_	_	_	_	_	-	9+	_	1	_	_	_	2	9+	8	8	7	8	7	9	9+	4*	2	8	5*	4*	9+	9	2*	_	_	_	_	1	6	18
	19	_	_	_	_	_	_	9+	-	_	_	_	-	1	9+	7	8	7	7	6	9	9+	3*	1	8	3*	2*	9	9	1*	_	1	_	_	_	6	19
	20	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	7	8	7	7	6	9	9+	2*	5	8	2*	1*	9	9+	-	-	5	1*			6	20
	21	_	_	_	_	_	-	9+	-	-	-	_	-	_	9+	8	9	8	8	6	9	9+	1*	6	9	5	5	9+	9+	_	-	7	1*	_	1	6	21
	22	_	_	_	_	_	_	9+	_	_	_	_	-	_	9+	8	8	9	8	7	8	9+	5	6	9	6	2	9+	9+	_	_	8	_	_	5	6	22
	23	_	_	_	_	_	-	9+	-	_	2	1	-	_	9+	8	8	9	8	7	9	9+	3	6	9+	7	2	8	9+	_	1*	8	_	_	8	6	23
		हा	FF	SA	AF	AS	oc	NA	EU	वच	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	RII	FE	SA	AF	AS	00	NA	EU	- 77	SA	AF	AS	oc	NA	
																	_					_															

Pick when the predicted rates are lowest or when you're sleepy.¹¹⁰

• Pick a band on which you can expect to run rate.

- Pick a band on which you can expect to run rate.
- There might be two bands where you can run rate choose the one open to other continents.

- Pick a band on which you can expect to run rate.
- There might be two bands where you can run rate choose the one open to other continents.
- If you can, run rate on the lower frequencies, where points are higher for intercontinental QSOs.

- Pick a band on which you can expect to run rate.
- There might be two bands where you can run rate choose the one open to other continents.
- If you can, run rate on the lower frequencies, where points are higher for intercontinental QSOs.
- Use second radio to find multipliers/QSOs on other bands.

Opportunities: Raw Data

Single-Operator, All-Band, SO2R, WPX CW

May, CA (San Francisco), for SSN = Low, Sigs in S-Units. (c) 2010 Dean Straw, N6BV

			80	Me	ter	s				40	Me	ter	5				20	Me	ter	s				15	Met	tera	5				10	Met	era	3		
UTC	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	$\mathbf{S}\mathbf{A}$	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	UTC
0	-	-	-	-	-	-	9+	1	-	7	2	-	-	9+	7	8	9	9	8	9	9+	1	4*	9+	8	1	8	9+	-	2*	8	-	1*	8	6	0
1	-	-	3	-	-	-	9+	4	-	8	5	-	2	9+	7	9	9+	9	8	9+	9+	1	6*	9+	7	4	9	9+	-	4*	7	-	2*	8	6	1
2	-	-	7	2	-	-	9+	5	-	8	6	-	6	9+	8	8	9+	9	8	9+	9+	2	5	9	5	5*	9	9+	-	3*	3	-	3*	9	8	2
3	2	-	8	5	-	4	9 <mark>+</mark>	3	-	8	8	-	8	9+	8	8	9+	9	8	9+	9+	4*	7	9	6	7	9	9+	-	1*	-	-	4*	8	6	3
4	1	-	9	6	-	8	9+	7	1	9	8	-	9	9+	8	8	9+	9	8	9+	9+	5*	7	9	6*	7*	9	9	1*	1	-	1*	5*	7	6	4
5	2	-	8	7	-	9	9+	8	2	9	8	-	9	9+	8	9	9+	9	8	9+	9+	<mark>5*</mark>	7	6	8*	5*	9	8	1*	-	-	2*	1*	8	6	5
6	2	-	8	6	-	8	9+	6	3	9	8	-	9+	9+	8	9	9+	7	8	9+	9+	5*	6	2	8*	3*	9+	8	-	-	-	1*	-	6	7	6
7	-	-	8	2	-	9	9+	6	5	9	8	-	9+	9+	7	9	9	5	8	9+	9+	2*	4	1	4*	1*	9	8	-	-	-	-	-	-	7	7
8	-	1	8	1	-	9	9+	3	8	9	6	1	9+	9+	5	9	9	2*	8	9	9+	1*	3	1	2*	-	9	8	-	-	-	-	-	-	7	8
9	-	6	8	-	-	9+	9+	2	8	9	2	2	9+	9+	2	9	8	3*	8	9	9+	-	1	-	1*	-	8	8	-	-	-	-	-	-	7	9
10	-	8	8	-	-	9+	9+	1	9	9	1	4	9+	9+	-	9	8	5*	5	9	9	-	-	-	-	-	6	8	-	-	-	-	-	-	7	10
11	-	8	7	-	-	9+	9+	1	9	9	-	5	9+	9+	-	8	9	6*	2*	9	9	-	-	1	1*	-	3	8	-	-	-	-	-	-	7	11
12	-	8	5	-	2	9+	9+	-	9	8	-	5	9+	9+	2	5	8	6*	1*	9+	9	-	-	-	-	-	1	8	-	-	-	-	-	-	7	12
13	-	8	1	-	1	9	9+	-	9	6	-	8	9+	9+	6	5	9	6	3	9+	9+	-	1*	3	_	-	_	8	-	-	-	-	_	-	7	13
14	-	6	_	-	-	9	9+	-	8	3	1*	5	9	9	7	8	9	8	8	9+	9+	-	2*	6	3	1*	1*	8	-	-	-	-	-	-	7	14
15	-	2	-	-	-	6	9+	-	7	-	-	4	9	9+	8	9	8	8	8	9	9+	1*	5*	7	4	5*	6	9	-	-	-	-	-	-	6	15
16	-	-	-	-	-	2	9+	-	6	-	_	2	8	9+	8	9	9	8	8	9+	9+	6*	4*	8	5*	7*	9	9	-	-	-	-	-	_	6	16
17	-	-	-	-	-	-	9+	-	3	-	-	1	6	9+	8	9	8	8	8	9+	9+	5*	6	7	4*	7*	9+	8	-	-	-	-	1*	_	6	17
18	-	-	_	_	-	-	9+	-	1	-	_	-	2	9+	8	8	7	8	7	9	9+	4*	2	8	5*	4*	9+	9	2*	-	-	-	_	1	6	18
19	_	_	_	_	_	-	9+	-	_	_	_	-	1	9+	7	8	7	7	6	9	9+	3*	1	8	3*	2*	9	9	1*	-	1	_	_	_	6	19
20	-	-	-	-	-	-	9+	-	-	-	-	-	-	9+	7	8	7	7	6	9	9+	2*	5	8	2*	1*	9	9+	-	-	5	1*	-	-	6	20
21	_	_	_	_	_	-	9+	-	_	_	_	-	_	9+	8	9	8	8	6	9	9+	1*	6	9	5	5	9+	9+	_	-	7	1*	_	1	6	21
22	-	_	_	-	-	-	9+	-	-	_	_	-	_	9+	8	8	9	8	7	8	9+	5	6	9	6	2	9+	9+	-	-	8	-	_	5	6	22
23	_	_	_	_	-	_	9+	-	-	2	1	_	_	9+	8	8	9	8	7	9	9+	3	6	9+	7	2	8	9+	_	1*	8	_	_	8	6	23
	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	ос	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	EU	FE	SA	AF	AS	oc	NA	

Here's the marked-up Summary sheet again.

Making a Band Plan

Single-Operator, All-Band, SO2R

W6 F	Plan, High Po	wer SO2R All-	Band, WPX C	N 2010			
UTC	160	80	40	20	15	10	Comments
0				Run JA,W	JA,OC,W	SA, OC	Run JA,W on 20; S&P Radio 2 on 10/15m
1		W	SA,W	Run JA,W	SA,OC,AF,W	JA*,SA,OC	Run JA,W on 20; S&P Radio 2 on 10/15/40m
2		W	SA,W	Run JA,EU,W	SA,OC,W	OC	Run EU,JA,W on 20; S&P Radio 2 on 10/15/40
3		W,SA	SA,W	Run JA,EU,W	JA,SA,OC,W	OC	Run EU,JA,W on 20; S&P Radio 2 on 10/15/40
4	W,SA	W,SA,AF,OC	EU,SA,AF,OC	Run JA,EU,W	EU*,JA,SA,OC	00	EU* on 15m possibly longpath
5	W,SA	W,SA,AF,OC	Run EU,W	Run JA,EU,W	EU*,JA,SA,OC		Run EU on 40m; S&P Radio 2
6	W,SA	W,SA,AF,OC	EU,SA,AF,OC	Run EU,JA,W	SA		Split for 40m to EU or else work Ws
7	W,SA,OC	W,SA,OC	EU,SA,AF,OC	Run JA,W	OC		S&P 2nd Radio. Sleep 1 hr 2nd night
8	W,SA,OC	W,SA,OC	Run JA,W	Run JA	OC		S&P 2nd Radio. Sleep 1 hr 2nd night
9	W,SA,OC	W,SA,OC,JA	Run JA,W	Run JA	00		S&P 2nd Radio. Sleep 1 hr 2nd night
10	W,SA,OC,JA	W,SA,OC,JA	Run JA,W	Run JA			Run JA on 20m, or 40m
11	W,OC,JA	Run JA,W	Run JA,W	OC			Run JA on 20m, or 40m, possibly 80
12	W,OC,JA	JA,OC	Run JA,W	Run W			Run W on 20m or JA on 40m. Sleep 1 hr?
13	W,OC,JA	Run JA,W	Run JA,W	Run W			Run W on 20m or JA on 40m, Sleep 1 hr?
14		OC	Run JA,W	Run W	SA		Run W on 20m or JA on 40m
15			JA	Run EU,JA,W	Run W		S&P 2nd Radio to check runnability on 15
16				Run EU,W	SA,AS*,OC		Check 15m for JA & JA*(Ip), EU*,AS* longpath
17				Run EU,W	EU*,SA,AS*		S&P 2nd Radio; check EU/AS longpath. Time off
18				Run EU,W	EU*,SA,AF*		S&P 2nd Radio; check EU/AF longpath. Time off
19				Run JA,W	Run W,SA,OC		S&P 2nd Radio; Time off Sun. (JA Mon. morning.)
20				Run JA,W	Run W,SA,OC		S&P 2nd Radio; Time off Sunday.
21				Run JA,EU,W	Run W,SA,OC	SA	S&P 2nd Radio; Time off Sunday.
22				Run JA,EU,W	SA,OC	SA,OC	S&P 2nd Radio; possibly run W
23				Run JA,EU,W	SA,OC	SA,OC	S&P 2nd Radio; possibly run W

• Reducing the data to a plan (Yellow = try CQing). Note that multiple azimuths are often open simultaneously.

Planning vs Operating!

• Planning is important because it alerts you to possible openings you might never have experienced, and it shows your competition.

Planning vs Operating!

• Planning is important because it alerts you to possible openings you might never have experienced, and it shows your competition.

• However, propagation is *always* changing and you've got to be on top of how things are actually going during a contest.

Planning vs Operating!

• Planning is important because it alerts you to possible openings you might never have experienced, and it shows your competition.

• However, propagation is *always* changing and you've got to be on top of how things are actually going during a contest.

• Being aware of what is *actually* happening on the bands is what separates the also-rans from the winners!

Where Can You Get the Latest N6BV Propagation Predictions?

- The exclusive distributor is *Radio-Ware* (also known as *Radio Bookstore*).
- Search using Google, or go to:
- http://www.radio-ware.com/

